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CHAPTER 7

I_{e_lé_lt_i(__)fléi Analys___ié

7.1 Introduction

In Relational Logic, it is possible to analyze the properties of sentences in much the same way as
in Propositional Logic. Given a sentence, we can determine its validity, satisfiability, and so forth
by looking at possible truth assignments. And we can confirm logical entailment or logical
equivalence of sentences by comparing the truth assignments that satisfy them and those that don'.

The main problem in doing this sort of analysis for Relational Logic is that the number of
possibilities is even larger than in Propositional Logic. For a language with n object constants
and m relation constants of arity &, the Herbrand base has m*n* elements; and consequently, there
are 2™ possible truth assignments to consider. If we have 10 objects and 5 relation constants of
arity 2, this means 2°® possibilities. ;

Fortunately, as with Propositional Logic, there are some shortcuts that allow us to analyze
sentences in Relational Logic without examining all of these possibilities. In this chapter, we start
with the truth table method and then look at some of these more efficient methods.

7.2 Truth Tables

As in Propositional Logic, it is in principle possible to build a truth table for any set of sentences in
Relational Logic. This truth table can then be used to determine validity, satisfiability, and so forth
or to determine logical entailment and logical equivalence.

As an example, let us assume we have a language with just two object constants a and b and two
relation constants p and g. Now consider the sentences shown below, and assume we want to know
whether these sentences logically entail 3x.q(x).

% p(a) V p(b)
~ Vx.(p(x) = g(x))

A truth table for this problem is shown below. Each of the first four columns represents one of the
elements of the Herbrand base for this language. The two middie columns represent our premises,
and the final column represents the conclusion.



2@ |p®) | 9@ | 9®) [p@) v )| vx.p0) = q0) [ 35909
1 1 1 1 1 1 |
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1 o0 1 1 1 1 1|
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0 1 1 0 1 0 1
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0 0 1 0 0 1 1

S —
0 0 0 1 0 1 1

B —
o o o o o | 1 0

Looking at the table, we see that there are 12 truth assignments that make the first premise true and
nine that make the second premise true and five that make them both true (rows 1, 5, 6,9, and 11).
Note that every truth assignment that makes both premises true also makes the conclusion true.
Hence, the premises logically entail the conclusion.

7.3. Semantic Trees

While the Truth Table method works in principle, it is impractical when the tables get very large.
As with Propositional Logic, we can sometimes avoid generating such tables by incrementally
constructing the corresponding "semantic trees", By interleaving unit propagation and
simplification with tree generation, we can often prune away unrewarding subtrees before they are
generated and thereby reduce the size of the trees.

7.4. Boolean Models

Truth tables and semantic trees are good ways of explicitly representing multiple models for a set
of sentences. In some cases, there is just one model.



In this approach, we write out an empty table for each relation and then fill in values based on the
constraints of the problem. For example, for any unit constraint, we can immediately enter the
corresponding truth value in the appropriate box. Given these partial assignments, we then simplify
the constraints (as in the semantic trees method), possibly leading to new unit constraints. We
continue until there are no more unit constraints.

As an example, consider the Sorority problem introduced in Chapter 1. We are given the
constraints shown below, and we want to know whether Dana likes everyone that Bess likes. In
other words, we want to confirm that, in every model that satisfies these sentences, Dana likes
everyone that Bess likes.

Dana likes Cody.

Abby does not like Dana.

Dana does not like Abby.

Abby likes everyone that Bess likes.
Bess likes Cody or Dana.

Abby and Dana both dislike Bess.
Cody likes everyone who likes her.
Nobody likes herself.

In this particular case, it turns out that there is just one model that satisfies all of these sentences.
The first step in creating this model is to create an empty table for the likes relation.

'Abby | Bess Cody Dana
Abby
Bess

Cody |

Dana



The data we are given has three units - the fact that Dana likes Cody and the facts that Abby does
not like Dana and Dana does not like Abby. Using this information we can refine our model by
putting a one into the third box in the fourth row and putting zeros in the fourth box of the first row
and the first box of the fourth row.

Abby Bess Cody Dana

Abby 0

Cody

Dana 0 1

Now, we know that Abby likes everyone that Bess likes. If Bess likes Dana, then we could
conclude that Abby likes Dana as well. We already know that Abby does not like Dana, so Bess
must not like Dana either.

|Abby | Bess Cody Dana

Abby ; 0
Bess 0
Cody

Dana 0 1



At the same time, we know that Bess likes Cody or Dana. Since Bess does not like Dana, she must
like Cody. Once again using the fact that Abby likes everyone whom Bess likes, we know that
Abby also likes Cody.

' Abby | Bess Cody Dana

Abby 1 0
Bess 1 0

_;Zody

Dana | 0 1

Abby and Dana both dislike Bess. Using this fact we can add Os to the first and last cells of the
second column.

' Abby | Bess Cody Dana

Abby 0 1 0
Bess 1 0
Cody

Dana 0 0 1



On the other hand, Cody likes everyone who likes her. This allows us to put a 1 in every column of
the third row where there is a 1 in the corresponding rows of the third column.

'Abby | Bess | Cody Dana

Abby 0 1 0
Bess | 1 0
Cody 1 1 1

Since nobody likes herself, we can put a 0 in each cell on the diagonal.

e -~ —

Abby Bess | Cody Dana
|
Abby O 0 1 0

Bess | 0 A1 0

Cody 1 1 0 1

Dana 0 0 1 0

Finally, using the fact that Abby likes everyone that Bess likes, we conclude that Bess does not
like Abby. (If she did then Abby would like herself, and we know that that is false.)



' Abby Bess ' Cody Dana
Abby | O© 0 1 0
Bess 0 0 1 0
Cody 1 1 0 1

Dana | 0 0 1 0

At this point, we have a complete model, and we can check our conclusion to see that this model
satisfies the desired conclusion. In this case, it is easy to see that Dana indeed does like everyone
that Bess likes.

We motivated this method by talking about cases where the given sentences have a unique model
as in this case. However, the method can also be of value even when there are multiple possible
models. For example, if we had left out the belief that Cody likes everyone who likes her, we
would still have eight models (corresponding to the eight possible combinations of feelings Cody
has for Abby, Bess, and Dana). Yet, even with this ambiguity, it would be possible to determine
whether Dana likes everyone Bess likes using just the portion of the table already filled in.

b

7.5 Non-Boolean Models

As defined in Chapter 6, a model in Relational Logic is an assignment of truth values to the ground
atoms of our language. We treat each ground atom in our language as a variable and assign it a
single truth value (1 or 0). In general, this is a good way to proceed. However, we can sometimes
do better.

Consider, for example, a theory with four object constants and two unary relation constants. In this
case, there would be eight elements in the Herbrand base and 28 (256) possible truth assignments.
Now, suppose we had the constraint that each relation is true of at most a single object. Most of
these assignments would not satisfy the single value constraint and thus considering them is
wasteful.

Luckily, in cases like this, there is a representation for truth assignments that allows us to eliminate
such possibilities and thereby save work. Rather than treating each ground atom as a separate



variable with its own Boolean value, we can think of each relation as a variable with 4 possible
values. In order to analyze sentences in such a theory, we would need to consider only 42 (16)
possibilities.

Even if we search the entire space of assignments, this a significant saving over the pure truth table
method. Moreover, we can combine this representation with the techniques described earlier to
find assignments for these non-Boolean variables in an even more efficient manner.

The game of Sukoshi illustrates this technique and its benefits. (Sukoshi is similar to Sudoku, but it
is smaller and simpler.) A typical Sukoshi puzzle is played on a 4x4 board. In a typical instance of
Sukoshi, several of the squares are already filled, as in the example below. The goal of the game is
to place the numerals 1 through 4 in the remaining squares of the board in such a way that no
numeral is repeated in any row or column.

We can formalize the rules of this puzzle in the language of Logic. Once we have done that, we
can use the techniques described here to find a solution.

In our formalization, we use the expression cell(1,2,3) to express the fact that the cell in the first
row and the second column contains the numeral 3. For example, we can describe the initial board
shown above with the following sentences.

cell(1,2,4)
cell(1,4,1)
cell(2,1,2)
cell(3,4,3)
cell(4,3,4)

We use the expression same(x,y) to say that x is the same as y- We can axiomatize same by simply
stating when it is true and where it is false. An abbreviated axiomatization is shown below.

same(1,1)  -same(2,1)  -same(3,1)  -same(4,1)
~same(1,2) same(2,2)  -same(3,2)  -same(4,2)



-same(1,3)  -same(2,3) same(3,3)  ~same(4,3)
-same(1,4)  -same(2,4)  -same(3,4) same(3,4)

Using this vocabulary, we can write the rules defining Sukoshi as shown below. The first sentence
expresses the constraint that two cells in that same row can contain the same value. The second
sentence expresses the constraint that two cells in that same column can contain the same value.
The third constraint expresses the fact that every cell must contain at least one value.

Vx.Vy.Vz.Vw.(cell(x,y,w) A cell(x,z,w) = same(y,z))

Vx.Vy.Vz.Vw.(cell(x,z,w) A cell(y,z,w) = same(x,y))
Vx.Vy.aw.cell(x.w) "43?5

As a first step in solving this problem, we start by focussing on the fourth column, since two of the
cells in that column are already filled. We know that there must be a 4 in one of the cells. It cannot
be the first, since that cell contains a 1, and it cannot be the third since that cell contains a 3. It also
cannot be the fourth, since there is already a 4 in the third cell of the fourth row. By process of
elimination, the 4 must go in the fourth cell of the second row, leading to the board shown below.

At this point, there is a four in every row and every column except for the first column in the third
row. So, we can safely place a four in that cell.

4 1
2 4
4 3



Since there is just one empty cell in the fourth column, we know it must be filled with the single
remaining value, viz. 2. After adding this value, we have the following board.

4 1

2 4
4 3
4 2

Now, let's turn our attention to the first column. We know that there must be a 1 in one of the cells.
It cannot be the first, since there is already a 1 in that row, and it cannot be the second or third
since those cell already contain values. Consequently, the 1 must go in the first cell of the fourth
oW,

la] |1
2I --_4_
T

Once again, we have a column with all but one cell filled. Column 1 has a 2 in the second cell, a 4
in the third, and a 1 in the fourth. So, we can place a 3 in the first cell of that column.

34 1
2 4
4 | 3
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4
N
1 42|

And we can fill in the single empty cell in the fourth row as well.
3
2
q
1134

Now, let's consider the second column. We cannot put a 2 in the second cell, since there is already

a 2 in that row. Since the first and last cells are already full, the only option is to put the 2 into the
third cell.

3/a 21

2| 4
PiPL
B5nn

; 4;-2 1
2.1 | '4_
al2[1]3]
1]3]a]2]

Finishing off the third column leads to the following board.
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Finally, we can place a 1 in the second cell of the second row. And, with that, the board is full. We
have a distinct numeral in every row and every column, as required by the rules.

STeTeTe]
1
e
i —

13 4

Given the initial assignment in this case, it is fairly easy to find a complete assignment that
satisfies the Sukoshi constraints. For other initial assignments, solving the problem is more
difficult. However, the techniques described here still work to cut down on the amount of work

necessary. In fact, virtually all Sukoshi puzzles can be solved using these techniques without any
form of trial and error.

Exercises

Exercise 7.1: Mr. Red, Mr. White, and Mr. Blue meet for lunch. Each is wearing a red shirt, a
white shirt, or a blue shirt. No one is wearing more than one color, and no two are wearing the
same color. Mr. Blue tells one of his companions, "Did you notice we are all wearing shirts with
different color from our names?", and the other man, who is wearing a white shirt, says, "Wow,
that's right!" Use the Boolean model technique to figure out who is wearing what color shirt.

Exercise 7.2: Amy, Bob, Coe, and Dan are traveling to different places. One goes by train, one by
car, one by plane, and one by ship. Amy hates flying. Bob rented his vehicle. Coe tends to get
seasick. And Dan loves trains. Use the Boolean models method to figure out which person, used
which mode of transportation.

Exercise 7.3: Sudoku is a puzzle consisting of a 9x9 board divided into nine 3x3 subboards. In a
typical puzzle, several of the squares are already filled, as in the example shown below. The goal



of the puzzle is to place the numerals 1 through 9 into the remaining squares of the board in such a
way that no numeral is repeated in any row or column or 3x3 subboard.

s{slef | | | [1]2]
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Use the techniques described in the Chapter to solve this puzzle.



CHAPTER 8

Relational Proofs

8.1 Introduction

As with Propositional Logic, we can demonstrate logical entailment in Relational Logic by writing
proofs. As with Propositional Logic, it is possible to show that a set of Relational Logic premises
logically entails a Relational Logic conclusion if and only if there is a finite proof of the
conclusion from the premises. Moreover, it is possible to find such proofs in a finite time.

In this chapter, we start by extending the Fitch system from Propositional Logic to Relational
Logic. We then illustrate the system with a few examples. Finally, we talk about soundness and
completeness.

8.2 Proofs

Formal proofs in Relational Logic are analogous to formal proofs in Propositicnal Logic. The
major difference is that there are additional mechanisms to deal with quantified sentences.

The Fitch system for Relational Logic is an extension of the Fitch system for Propositional Logic.
In addition to the ten logical rules of inference, there are four ordinary rules of inference for
quantified sentences and one additional rule for finite languages. Let's look at each of these in turn.
(If you're like me, the prospect of going through a discussion of so many rules of inference sounds
a little repetitive and boring. However, it is not so bad. Each of the rules has its own quirks and
idiosyncrasies, its own personality. In fact, a couple of the rules suffer from a distinct excess of
personality. If we are to use the rules correctly, we need to understand these idiosyncrasies.)

Universal Introduction (UI) allows us to reason from arbitrary sentences (o universally quantified
versions of those sentences.

Universal Introduction
P
Vv.p

where v does not occur free in both ¢ and an active assumption



Typically, Ul is used on sentences with free variables to make their quantification explicit. For
example, if we have the sentence hates(jane,y), then, we can infer Vy.hates(jane,y).

Note that we can also apply the rule to sentences that do not contain the variable that is quantified
in the conclusion. For example, from the sentence hates(jane,jill), we can infer Vx.hates(jane,jill).
And, from the sentence hates(jane,y), we can infer Vx.hates(jane,y). These are not particularly
sensible conclusions. However, the results are correct, and the deduction of such results is
necessary to ensure that our proof system is complete.

There is one important restriction on the use of Universal Introduction. If the variable being
quantified appears in the sentence being quantified, it must not appear free in any active
assumption, i.e. an assumption in the current subproof or any superproof of that subproof. For
example, if there is a subproof with assumption p(x) and from that we have managed to
derive g(x), then we cannot just write Vx.g(x).

If we want to quantify a sentence in this situation, we must first use Implication Introduction to
discharge the assumption and then we can apply Universal Introduction. For example, in the case
just described, we can first apply Implication Introduction to derive the result (p(x) = g(x)) in the
parent of the subproof containing our assumption, and we can then apply Universal Introduction to
derive Vx.(p(x) = g(x)).

Universal Elimination (UE) allows us to reason from the general to the particular. It states that,
whenever we believe a universally quantified sentence, we can infer a version of the target of that
sentence in which the universally quantified variable is replaced by an appropriate term.

Universal Elimination
vv.p[vi

o[7]
where 1 is substitutable for v in @

For example, consider the sentence Vy.hates(jane,y). From this premise, we can infer that Jane
hates Jill, i.e. hates(jane jill). We also can infer that Jane hates her mother,
i.e. hates(jane,mother(jane)). We can even infer than Jane hates herself, i.e. hates(jane jane).

In addition, we can use Universal Elimination to create conclusions with free variables. For
example, from Vx.hates(jane,x), we can infer hates(jane x) or, equivalently, hates(jane,y).

In using Universal Elimination, we have to be careful to avoid conflicts with other variables and-
quantifiers in the quantified sentence. This is the reason for the constraint on the replacement term.



As an example of what can go wrong without this constraint, consider the sentence
Vx.3y.hates(x,y), i.e. everybody hates somebody. From this sentence, it makes sense to infer
dy.hates(jane,y), i.e. Jane hates somebody. However, we do not want to infer 3y.hates(y,y); i-e.,
there is someone who hates herself.

We can avoid this problem by obeying the restriction on the Universal Elimination rule. We say
that a term 7 is free for a variable v in a sentence ¢ if and only if no free occurrence of v occurs
within the scope of a quantifier of some variable in 7. For example, the term x is free for y in
3z.hates(y,z). However, the term z is not free for y, since y is being replaced by z and y occurs
within the scope of a quantifier of z. Thus, we cannot substitute z for y in this sentence, and we
avoid the problem we have just described.

Existential Introduction (El) is easy. If we believe a sentence involving a ground term t, then we
can infer an existentially quantified sentence in which one, some, or all occurrences of t have been
replaced by the existentially quantified variable.

Existential
Introduction

akd|
Av.pfv]

For example, from the sentence hates(jill jill), we can infer that there is someone who hates
herself, i.e. Ix.hates(x,x). We can also infer that there is someone Jill hates, i.e. 3x.hates(jill x), and
there is someone who hates Jill, i.e. 3y.hates(x,jill). And, by two applications of Existential
Introduction, we can infer that someone hates someone, i.e. 3x.3y.hates(x,y).

Note that, in Existential Introduction, it is important to avoid variables that appear in the sentence
being quantified. Without this restriction, starting from 3x.hates(jane.x), we might deduce
Ax.3x.hates(x,x). It is an odd sentence since it contains nested quantifiers of the same variable.
However, it is a legal sentence, and it states that there is someone who hates himself, which does
not follow from the premise in this case.

Existential Elimination (EE). Suppose we have an existentially quantified sentence with target o;
and suppose we have a universally quantified implication in which the antecedent is the same as
the scope of our existentially quantified sentence and the conclusion does not contain any
occurrences of the quantified variable. Then, we can use Existential Elimination to infer the
consequent.

Existential Elimination
Av.p[v]



vv.(p[v]=>w)

"
where v does not occur free in y

For example, if we have the sentence Vx.(hates(jane,x) = -nice(jane)) and we have the sentence
Ax.hates(jane,x), then we can conclude -nice(jane)).

[t is interesting to note that Existential Elimination is analogous to Or Elimination. This is as it
should, as an existential sentence is effectively a disjunction. Recall that, in Or Elimination, we
start with a disjunction with » disjuncts and » implications, one for each of the disjuncts and
produce as conclusion the consequent shared by all of the implications. An existential sentence
(like the first premise in any instance of Existential Elimination) is effectively a disjunction over
the set of all ground terms; and a universal implication (like the second premise in any instance of
Existential Elimination) is effectively a set of implications, one for each ground term in the
language. The conclusion of Existential Elimination is the common consequent of these
implications, just as in Or Elimination.

Finally, for languages with finite Herbrand bases, we have the Domain Closure (DC) rule. For a
language with object constants o, ... , Gy, the rule is written as shown below. If we believe a
schema is true for every instance, then we can infer a universally quantified version of that
schema.

Domain
Closure

olo1]
¢[os]
Vv.o[v]

For example, in a language with four object constants a and b and ¢ and d, we can derive the
conclusion Vx.¢{x] whenever we have ¢[a] and ¢[b] and ¢[c] and ¢[d].

Why restrict DC to languages with finitely many ground terms? Why not use domain closure rules
for languages with infinitely many ground terms as well? It would be good if we could, but this
would require rules of infinite length, and we do not allow infinitely large sentences in our
language. We can get the effect of such sentences through the use of induction, which is discussed
in a later chapter.



As in Chapter 4, we define a structured proof of a conclusion from a set of premises to be a
sequence of (possibly nested) sentences terminating in an occurrence of the conclusion at the top
level of the proof. Each step in the proof must be either (1) a premise (at the top level) or an
assumption (other than at the top level) or (2) the result of applying an ordinary or structured rule

of inference to earlier items in the sequence (subject to the constraints given above and in Chapter
3).

8.3 Example

As an illustration of these concepts, consider the following problem. Suppose we believe that
everybody loves somebody. And suppose we believe that everyone loves a lover. Our job is to
prove that Jack loves Jill.

First, we need to formalize our premises. Everybody loves somebody. For all y, there exists
a zsuch that loves(y,z).

Vy.3z.loves(y,z)

Everybody loves a lover. If a person is a lover, then everyone loves him. If a person loves another
person, then everyone loves him. For all x and for all y and for all z, loves(y,z) implies loves(x,y).

Vx.Vy.Vz.(loves(y,z) = loves(x,y))

Our goal is to show that Jack loves Jill. In other words, starting with the preceding sentences, we
want to derive the following sentence.

loves(jack jill)

A proof of this result is shown below. Our premises appear on lines 1 and 2. The sentence on line 3
is the result of applying Universal Elimination to the sentence on line 1, substituting jill for y. The
sentence on line 4 is the result of applying Universal Elimination to the sentence on line 2,
substituting jack for x. The sentence on line 5 is the result of applying Universal Elimination to the
sentence on line 4, substituting ji/l for y. Finally, we apply Existential Elimination to produce our
conclusion on line 6.

Vy.3z.loves(y,z) Premise
Vx.Vy.Vz.(loves(y,z) = loves(x,y)) Premise
Az.loves(jill,z) UE: 1

Vy.Vz.(loves(y,z) = loves(jack,y)) UE: 2
Vz.(loves(jill z) = loves(jack.jill)) UE: 4

SIS



6. loves(jack,jill) EE: 3,5

Now, let's consider a slightly more interesting version of this problem. We start with the same
premises. However, our goal now is to prove the somewhat stronger result that everyone loves
everyone. For all x and for all y, x loves y.

Vx.Vy.loves(x,y)

The proof shown below is analogous to the proof above. The only difference is that we have free
variables in place of object constants at various points in the proof. Once again, our premises
appear on lines 1 and 2. Once again, we use Universal Elimination to produce the result on line 3;
but this time the result contains a free variable. We get the results on lines 4 and 5 by successive
application of Universal Elimination to the sentence on line 2. We deduce the result on line 6 using
Existential Elimination. Finally, we use two applications of Universal Introduction to generalize
our result and produce the desired conclusion.

1. Vy.3z.loves(y,z) Premise
2. Vx.¥y.Vz.(loves(y,z) = loves(x,y)) Premise
3. 3Jz.loves(y,z) UE: 1
4. vy.Vz.(loves(y,z) = loves(r,y)) UE:2
3. Vz.(loves(y,z) = loves(x,y)) UE: 4
6. loves(xy) EE: 3,5
7. Vy.loves(x.y) UL: 6
8. Vx.Vy.loves(x,y) UL 7

This second example illustrates the power of free variables. We can manipulate them as though we
are talking about specific individuals (though each one could be any object); and, when we are
»\L\\ M“\\ done, we can universalize them to derive universally quantified conclusions.

8.4 Example

( k(&\?\'\\
As another illustration of Relational Logic proofs, consider the following problem. We know that
/ hogses are faster than dogs and that there is a_greyhound that is faster than every rabbit. We know

that Harry is a horse and that Ralph is it. Our job is to derive the fact that Harry is faster than
Ralph.
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First, we need to formalize our premises. The relevant sentences follow. Note that we have added
two facts about the world not stated explicitly in the problem: that greyhounds are dogs and that
our faster than relationship is transitive.

Vx.Vy.(h(x) A d(y) = fx,y)
Ay.(8(y) A Vz(r(2) = fy.2)))
vy{(g(y) = d(¥))
Vx.Vy.Vz.(fix.y) A f(y,2) = fx,2))
h(harry)

r(ralph)

Our goal is to show that Harry is faster than Ralph. In other words, starting with the preceding
sentences, we want to derive the following sentence.

flharry,ralph)

The derivation of this conclusion goes as shown below. The first six lines correspond to the
premises just formalized. On line 7, we start a subproof with an assumption corresponding to the
scope of the existential on line 2, with the idea of using Existential Elimination later on in the
proof. Lines 8 and 9 come from And Elimination. Line 10 is the result of applying Universal
Elimination to the sentence on line 9. On line 11, we use Implication Elimination to infer that y is
faster than Ralph. Next, we instantiate the sentence about greyhounds and dogs and infer that y is a
dog. Then, we instantiate the sentence about horses and dogs; we use And Introduction to form a
conjunction matching the antecedent of this instantiated sentence; and we infer that Harry is faster
than y. We then instantiate the transitivity sentence, again form the necessary conjunction, and
infer the desired conclusion. Finally, we use Implication Introduction to discharge our subproof;
we use Universal Introduction to universalize the results; and we use Existential Elimination to
produce our desired conclusion.

1. vx.Wy.(h(x) A d(y) = fx,y)) Premise

2. y(8(y) A Vz(r(z) = fy,2)) Premise

3. (g = d(y)-) Premise

4. Vx.Vy.Vz.(fix,y) Afly.z) = fix,2) Premise

5. h(harry) Premise

6. r(ralph) Premise

7. g(») AVz(r(z) = Av,2) Assumption
8. 80 AE: 7

9. Vz(r(z) = fiy,2)) AE: 7



10. r(ralph) = Ry,raiph) UE: 9

11. Ry,raiph) IE: 10,6
12. g(y)=d(y) UE: 3

13. d(y) IE: 12, 8
14. Vy.(h(harry) A d(y) = flharry,y)) UE: 1

15. h(harry) A d(y) = Rharryy) UE: 14
16. h(harry) A d(y) AlL: 5,13
17. flharry.y) IE: 15,16
18. Vy.Vz.(flharry,y) A (v.z) = flharry,z)) UE: 4

19. vz.{flharry,y) A fy,z)} = fharry,z)) UE: 18
20. flharry,y) A fy,ralph) = Rharry,ralph) UE: 19
21. Rharry,y) A Ry,ralph) Al: 17,11
22. flharry,ralph) IE: 20, 21

23. g(y) AVz.(r(z) = f{y,2)) = flharry,raiph) II: 7,22
24. Yy.(g(y) A Vz.(r(z) = fy,2)) = fharry,ralph))UL: 23
25. flharry,ralph) EE: 2,24

This derivation is somewhat lengthy, but it is completely mechanical. Each conclusion follows
from previous conclusions by a mechanical application of a rule of inference. On the other hand, in
producing this derivation, we rejected numerous alternative inferences. Making these choices
intelligently is one of the key problems in the process of inference.

8.5 Example
In this section, we use our proof system to prove some basic results involving quantifiers.

Given Vx.Vy.(p(x,y) = g(x)), we know that Vx.(3y.p(x,y) = g(x)). In general, given a universally
quantified implication, it is okay to drop a universal quantifier of a variable outside the implication
and apply an existential quantifier of that variable to the antecedent of the implication, provided
that the variable does not occur in the consequent of the implication.

Our proof is shown below. As usual, we start with our premise. We start a subproof with an
existential sentence as assumption. Then, we use Universal Elimination to strip away the outer
quantifier from the premise. This allows us to derive g(x) using Existential Elimination. Finally,
we create an implication with Implication Introduction, and we generalize using Universal
Introduction.

L. VxVy.(p(x,y) = q(x)) Premise



Jy.p(x.y) Assumption
Vy.(p(xy) = ) UE:1

q(x) EE: 2,3

. Ay.plx.y) = q(x) II: 4

. Yx.(Qy.p(xy) = g(x)) UL: 5

o v oA N

The relationship holds the other way around as well. Given Vx.(3y.p(x,y) = g(x)), we know that

Vx.Vy.(p(x,y) = g(x)). We can convert an existential quantifier in the antecedent of an implication
into a universal quantifier outside the implication.

Our proof is shown below. As usual, we start with our premise. We start a subproof by making an
assumption. Then we turn the assumption into an existential sentence to match the antecedent of
the premise. We use Universal Implication to strip away the quantifier in the premise to expose the
implication. Then, we apply Implication Elimination to derive g(x). Finally, we create an
implication with Implication Introduction, and we generalize using two applications of Universal
Introduction.

1. vx.(3y.p(x,y) = g(x)) Premise

2. plx.y) Assumption
3. 3Ay.p(x.y) El: 2

4. 3y.p(x,y) = q(x) UE: 1

5. q{x) IE: 4,3

6. p(x,y) = q(x) II: 5

7. Vx.Vy.(p(x,y) = g(x)) 2x UL 6

Recap

A Fitch system for Relational Logic can be obtained by extending the Fitch system for
Propositional Logic with four additional rules to deal with quantifiers. The Universal
Introductionrule allows us to reason from arbitrary sentences to universally quantified versions of
those sentences. The Universal Elimination rule allows us to reason from a universally quantified
sentence to a version of the target of that sentence in which the universally quantified variable is
replaced by an appropriate term. The Existential Introduction rule allows us to reason from a
sentence involving a term t to an existentially quantified sentence in which one, some, or all



occurrences of T have been replaced by the existentially quantified variable. Finally, the Existential
Elimination rule allows us to reason from an existentially quantified sentence Av.@[v] and a

universally quantified implication Vv.(¢[v] = v) to the consequent v, under the condition that v
does not occur in .

Exercises
Exercise 8.1: Given Vx.(p(x) A g(x)), use the Fitch System to prove Vx.p(x) A Vx.g(x).
Exercise 8.2: Given Vx.(p(x) = g(x)), use the Fitch System to prove Vx.p(x) = Vx.g(x).

Exercise 8.3: Given the premises Vx.(p(x) = g(x)) and Vx.(g(x) = r(x)), use the Fitch system to
prove the conclusion Vx.(p(x) = r(x)).

Exercise 8.4: Given Vx.¥y.p(x,y), use the Fitch System to prove vy.Vx.p(x,y).
Exercise 8.5: Given Vx.¥y.p(x.y), use the Fitch System to prove Vx.¥y.p(yx).
Exercise 8.6: Given 3y.Vx.p(x,y), use the Fitch system to prove vx.3y.p(x,y).
Exercise 8.7: Given 3x.—~p(x), use the Fitch System to prove =Vx.p(x).

Exercise 8.8: Given Vx.p(x), use the Fitch System to prove -3x.~p(x).
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