
CS 157 – FITCH TRICKS 
Stefan Swaans 







General Tricks 
• The premises are usually given for a 
reason — use them! 
 

• Every time you create an assumption, you 
need to know what implication you want 
to prove. 
• An implication is the only thing we can get from 

assuming something! Assumptions are not useful for 
anything else. 



General Tricks (cont.) 
• Sometimes it helps to slow down and 
actually process what you are trying to 
prove. 
•  This can help you to gain an intuition for the correct 

approach to the problem. 
 

• If all else seems to fail, try revisiting your 
initial assumption. Is there a different path 
you could take to prove your goal? 



•  It may help to view proofs recursively. 
•  Say we want to prove A 
•  In order to prove A, we must prove B and C 
•  In order to prove B, we must prove X 
•  In order to prove C, we must prove Y 
•  Etc… 

 

• View each step of the recursion as a subproblem. 
•  “Given all sentences in all of your superproofs, prove X.” 
•  Sometimes you may have to pull from a distant superproof! 

Recursion Mindset 



Implication Tricks 
• If your goal is X=>Y, always start by 
assuming X! 
• Example: Given q, show p=>q 

• If you’re given X=>Y and your goal is Y, 
show X. 
• Example: Given (p=>q)=>r and q, show r 

• You can always show X=>X for any X. 
• Example: Show p=>p 



Negation Tricks 
•  If you want to prove X and X doesn’t seem to be “readily 

available” anywhere in your premises or superproofs, very 
likely you should assume ~X. 
•  Example: Given p and ~p, show q 

• When you assume ~X, remember the goal is to show 
~X=>Y and ~X=>~Y for some Y. (Negation Intro.) 

• Picking Y can sometimes be one of the hardest parts of 
the proof. If you can, try to keep Y as simple a sentence 
as possible. If Y or ~Y is already proven/given, that’s a 
good candidate. 
•  Disclaimer: There are some (difficult) proofs in which the correct Y 

is not obvious! 



Negation Tricks (cont.) 
• If you ever have X and ~X, you can prove 
anything! 
• Useful for creating Negation Introductions! 
• Example: Given p and ~p, show (q=>r=>z)&((r|s)=>q)) 

 

• If you have X=>Y and ~Y, you can easily 
prove ~X. 
• Useful for creating Negation Introductions! 
• Example: Given p=>q and ~q, show ~p 



Or Tricks 
• When dealing with some sentence 
containing X|Y, you’ll probably need to 
use Or Introduction and/or Or 
Elimination! 
• Example: Given p=>q, show p=>q|s 

 

• Or Introduction is very powerful when 
combined with Negation Introduction. 
• When you have ~(X|Y), you can show ~X and ~Y. 
• Example: Given ~(p|q), show ~p 



Or Tricks (cont.) 
• How do we know whether to consider Or 
Elimination or Or Introduction? 
• Generally, if we’re trying to prove some X|Y, look to use 

Or Introduction. 
• Generally, if we have some X|Y and want to prove 

something else, look to use Or Elimination. 



And Tricks 
• If you ever have some X&Y, there is no 
harm in using And Elimination to get X and 
Y. They are probably useful on their own. 


