Phil 225 -- Symbolic Logic Additional Rules of Inference for Quantification Theory

UE (Universal Elimination): $(\alpha)\Phi$. No strings attached. $\Phi \alpha/\beta$

UI (Universal Introduction): If you can derive $\Phi \alpha/\beta$, where β does not appear in any of the premises of $\Phi \alpha/\beta$, then you can generalize to $(\alpha)\Phi$. Be sure that you generalize on **all** occurrences of β ; be sure that β does not appear in any of the premises of the line you generalize on.

EI (Existential Introduction): $\Phi \alpha / \beta$. No strings attached. ($\exists \alpha) \Phi$

EE (Existential Elimination).

Γ	(i) (∃α) Φ	
	•	
{j}	(j) Φα/β	Premise
	•	
	•	
$\Delta \cup \{j\}$	(k) Ψ	
$\Gamma \cup \Delta$	(k+1) Ψ	i, j, k EE

Restrictions: β must not appear in line i, line k, or any premise of line k other than j. Note that Ψ is simply rewritten. The function of the rule is to trade in premise j, the exemplar, for all the premises of $(\exists \alpha) \Phi$.

Q (Quantifier): move a negation past a quantifier, and flip/flop the quantifier (universal turns to existential; existential turns to universal). Eliminate double negations if you wish. Rule Q can be used inside of WFFs.