Introduction to Logic Summary

Michael Genesereth Computer Science Department Stanford University

Multiple Logics

Propositional Logic (logical operators)

$$(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$$

Relational Logic (variables and quantifiers)

 $(\forall x.p(x)) \lor (\exists x.q(x,x))$

Functional Logic (compound terms)

 $\forall x.(p(x) \Leftrightarrow p(f(x)) \land p(g(x)))$

Properties of Sentences

Valid

Contingent

Unsatisfiable

A sentence is *valid* if and only if *every* interpretation satisfies it.

A sentence is *contingent* if and only if *some* interpretation satisfies it and *some* interpretation falsifies it.

A sentence is *unsatisfiable* if and only if *no* interpretation satisfies it.

Properties of Sentences

Relationships

A sentence ϕ is *logically equivalent* to a sentence ψ if and only if every truth assignment that satisfies ϕ satisfies ψ and every truth assignment that satisfies ψ satisfies ϕ .

A sentence ϕ is *consistent with* a sentence ψ if and only if there is a truth assignment that satisfies both ϕ and ψ .

A set of premises Δ *logically entails* a conclusion φ (written as $\Delta \models \varphi$) if and only if every interpretation that satisfies the premises also satisfies the conclusion.

Metatheorems

Propositional Metatheorems: Equivalence Theorem Deduction Theorem Unsatisfiability Theorem Consistency Theorem Substitution Theorem

> These theorems also hold in Relational Logic but only for **closed** sentences (no free variables).

Determining Logical Entailment

$\{p(a)$	V	p(b),	$\forall x.(p(x))$	$\Rightarrow q(x))\}$	$\models \exists x.q(x)?$
----------	---	-------	--------------------	-----------------------	---------------------------

p (a)	p (b)	q (a)	q (b)	$p(a) \vee p(b)$	$\forall x.(p(x) \Rightarrow q(x))$	$\exists x.q(x)$
1	1	1	1	1	1	1
1	1	1	0	1	0	1
1	1	0	1	1	0	1
1	1	0	0	1	0	0
1	0	1	1	1	1	1
1	0	1	0	1	1	1
1	0	0	1	1	0	1
1	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	1	0	1	0	1
0	1	0	1	1	1	1
0	1	0	0	1	0	0
0	0	1	1	0	1	1
0	0	1	0	0	1	1
0	0	0	1	0	1	1
0	0	0	0	0	1	0

Proof

 $\{\forall x.(p(x) \Rightarrow q(x)), \forall x.(q(x) \Rightarrow r(x))\} \vDash \forall x.(p(x) \Rightarrow r(x))$

1.	$\forall x.(p(x) \Rightarrow q(x))$
2.	$\forall x.(q(x) \Rightarrow r(x))$
3.	$p([c]) \Rightarrow q([c])$
4.	$q([c]) \Rightarrow r([c])$
5.	p([c])
6.	$ \begin{array}{c} p([c]) \\ q([c]) \\ r([c]) \end{array} $
7.	r([c])
8.	$p([c]) \Rightarrow r([c])$
9.	$\forall x.(p(x) \Rightarrow r(x))$

Premise Premise UE: 1 UE: 2 Assumption IE: 5, 3 IE: 6, 4 II: 5,7 UI: 8

Soundness and Completeness

A proof system is *sound* if and only if every provable conclusion is logically entailed.

If $\Delta \vdash \phi$, then $\Delta \models \phi$.

A proof system is *complete* if and only if every logical conclusion is provable.

If $\Delta \vDash \phi$, then $\Delta \vdash \phi$.

Soundness and Completeness

Fitch is sound and complete for Propositional Logic.

 $\Delta \vdash \phi$ if and only if $\Delta \vDash \phi$.

Fitch is sound and complete for Relational Logic.

 $\Delta \vdash \phi$ if and only if $\Delta \models \phi$.

Fitch (w/ induction) is sound for Functional Logic, not complete.

If $\Delta \vdash \phi$, then $\Delta \models \phi$.

What's Next?

Automated Theorem Proving Building computers that can prove theorems CS 257 - Automate Reasoning

Logic Programming

Using Logic to represent knowledge, program computers CS 151 - Logic Programming CS 227B - General Game Playing

Advanced Logics

Metadata, Paraconsistent Reasoning, Probabilities Phil 161

What's Next?

Final Exam

