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People (Nicknames):

     michael ↔
      mike ↔

Arithmetic:
                    plus(s(0), s(0))        ↔
                    times(s(s(0)), s(0))  ↔    2
                    s(s(0))                     ↔

Objects with Multiple Names



People
      michael ↔

      maureen ↔

Unnamed People

Objects with No Names



Named real numbers (countably many):
   123
    34.12
    pi
    e

All the others (uncountably many):
   3.141544878723489184093893477809489084...
   6.878989783975975738975379875837593358...

How many floating point numbers are there?

Mathematical Objects Without Names



Syntax
    Identical to Herbrand Logic

Semantics
    Herbrand Logic - defined in terms of language
    First Order Logic - defined in terms of external worlds

First Order Logic



Language of First Order Logic

q(b,c)p(a)

∀x.(p(x) ⇒ q(x,f(x)))

∃x.q(x,d)

¬p(b)

p(c) ∨ p(d)

Identical to Syntax of Functional Logic



A vocabulary is a set of symbols. 

{a, b, f, q}

A universe of discourse is an arbitrary set of objects. 

{   ,    ,   ,   }

An interpretation is an assignment to symbols in language.

a= , b=

                                 f={ → , → , …}

q={〈 , 〉, 〈 , 〉, 〈 , 〉, …}

Interpretations



A vocabulary is a set of symbols. 

{a, b, f, q}

A universe of discourse is an arbitrary set of objects. 

{1, 2, 3, 4}

An interpretation is an assignment to symbols in language.

a=1, b=2
f={1→2, 2→3, …}

q={〈1,2〉,〈2,3〉,〈2,4〉, …}

Entailment defined in terms of all interpretations over
 all possible universes of all possible sizes

Interpretations



A variable assignment for a universe of discourse U is a 
function assigning variables to objects in U.

v: Variable → U

Universe of Discourse:
    U = {1, 2, 3}

Example: Example:
    v(x) = 1     v(x) = 2
    v(y) = 2     v(y) = 2
    v(z) = 3     v(z) = 2

Variable Assignments



A value assignment siv based on interpretation i and 
variable assignment v is a mapping from the terms 
of the language into the universe of discourse.

siv(σ)=i(σ)
siv(υ)=v(υ)

             siv(π(τ1,…,τn)=i(π)(siv(τ1),…,siv(τn))

Value Assignments



A truth assignment satisfies a relational sentence if 
and only if the tuple of objects denoted by the 
arguments is a member of the relation denoted by the 
relation constant.

 tiv(ρ(τ1,…,τn)) = true  if 〈siv(τ1),…, siv(τ1)〉 ∈ i(ρ)
                    = false otherwise

Relational Sentences



tiv(¬ϕ) = true  iff tiv(ϕ) = false

tiv(ϕ ∧ψ) = true  iff tiv(ϕ) = true and tiv(ψ) = true 

tiv(ϕ ∨ψ) = true  iff tiv(ϕ) = true or tiv(ψ) = true 

tiv(ϕ ⇒ψ) = true  iff tiv(ϕ) = false or tiv(ψ) = true 

tiv(ϕ ⇔ψ) = true  iff tiv(ϕ) = tiv(ψ)

Logical Sentences



Intuitively, a universally quantified sentence is true 
if and only if it is true no matter what value we 
assign to the universally quantified variable.

Intuitively, an existentially quantified sentence is 
true if and only if it is true for some value of the 
existentially quantified variable.

Stating these definitions precisely is a little tricky 
due to the possibility of nested quantifiers.

∀x.(∃y.r(x,y) ⇒∀x.r(x,x))

Quantified Sentences



A version v[ω←x] of a variable assignment v is the 
variable assignment that agrees with v on all 
variables except ω, which is assigned the value x.

v[ω←x](θ) = x       if θ=ω
v[ω←x](θ) = v(θ)  if θ≠ω

Versions



A universally quantified sentence is true in 
interpretation i and variable assignment v if and only if 
the scope is true for i and every version of v.

 tiv(∀ω.ϕ )=true iff tiv[ω←x](ϕ)=true for all x∈|i|.

An existentially quantified sentence is true in 
interpretation i and variable assignment v if and only if 
the scope is true for i and some version of v.

 tiv(∃ω.ϕ )=true iff tiv[ω←x](ϕ)=true for some x∈|i|.

Quantified Sentences



First Order Logic: A universally quantified sentence is true 
in interpretation i and variable assignment v if and only if 
the scope is true for i and every version of v compatible with 
interpretation i.

Herbrand Logic: A universally quantified sentence is true in 
a truth assignment if and only if every instance is true.

Comparison



In Herbrand Logic, if Δ ⊨ p(𝜏) for every ground term 𝜏, does 
Δ ⊨ ∀x.p(x)?

Yes.

Herbrand Logic vs First-Order Logic



In Herbrand Logic, if Δ ⊨ p(𝜏) for every ground term 𝜏, does 
Δ ⊨ ∀x.p(x)?

Yes.

In First-Order Logic, if Δ ⊨ p(𝜏) for every ground term 𝜏, 
does Δ ⊨ ∀x.p(x)?

No.  There can be objects without names.

Herbrand Logic vs First-Order Logic



Can we describe uncountable world in Herbrand Logic?

No.  There only countably many terms and countably many 
ground sentences in our language.

Upshot: It is not possible to axiomatize uncountable worlds 
in Herbrand Logic.

Herbrand Logic and Uncountable Worlds



Can we describe uncountable worlds in First-Order Logic?

Yes.  There can be objects without names.

Lowenhein-Skolem Theorem: If a set of sentences in First 
Order Logic has a model of one infinite cardinality, then it 
has a model of every infinite cardinality.   (This striking 
result is true but not obvious.)

Upshot: It is not possible to write a sentence in First Order 
Logic that is true in an uncountable world and not true in 
any countably infinite world or vice-versa.

FOL and Uncountable Worlds



Peano Arithmetic

Transitive Closure

Both of these are finite axiomatizations and are complete (i.e. 
they precisely define which sentences are true and which are 
false).  There are no non-standard models.

Completeness of Herbrand Logic



First-Order Logic (FOL) theories with infinite universes have 
nonstandard models (unintended models that cannot be 
excluded).

Upshot: FOL is weaker than Herbrand Logic.  Some notions 
that can be defined exactly in Herbrand Logic cannot be 
defined in FOL without allowing nonstandard models, e.g. 
Peano Arithmetic, transitive closure.

Incompleteness of First-Order Logic



There is a proof procedure for First Order Logic that is both 
sound and complete.  (Spoiler Alert: Fitch without Domain 
Closure and Induction does the trick.)

Moreover, by systematically applying the procedure, possible 
to compute all logical consequences of any enumerable set of 
premises.  (Apply Fitch to produce all finite proofs in 
systematic way.)

Upshot: provability and logical entailment are semi-decidable 
(though not decidable).

Inferential Completeness of First Order Logic



The axiomatization of Peano Arithmetic in Herbrand Logic 
completely defines Peano Arithmetic.

If Herbrand entailment were semi-decidable, the set of all 
true sentences would be enumerable.

Godel’s incompleteness theorem tells us that the set of all 
true sentences of Peano arithmetic is not computably 
enumerable.

Consequently, there is no complete (semi-decidable) proof 
procedure for Herbrand Logic.

Inferential Incompleteness of Herbrand Logic



Theorem: Any sound proof procedure for First Order 
Logic is sound for Herbrand Logic.

Even though there is no complete proof procedure, 
Herbrand logic is not weaker.  In fact, Herbrand logic is 
stronger than FOL.  There are simply more things that 
are true.

We cannot prove them all, but we can prove everything 
we could prove in First Order Logic; and, by building in 
induction, we can prove more things.

Comparison



First Order Logic:
    Compact
    Complete proof procedure
    Semi-decidable

Herbrand Logic:
    Not compact
    No complete proof procedure
    Not even semi-decidable

Comparison of Herbrand Logic over First Order Logic:
    Herbrand Semantics simpler and more intuitive
    FOL can be used to describe uncountable worlds
    More things definable in Herbrand Logic
    Greater inferential power in HL but not complete

Summary



http://logic.stanford.edu/herbrand/manifesto.html

Herbrand Manifesto




