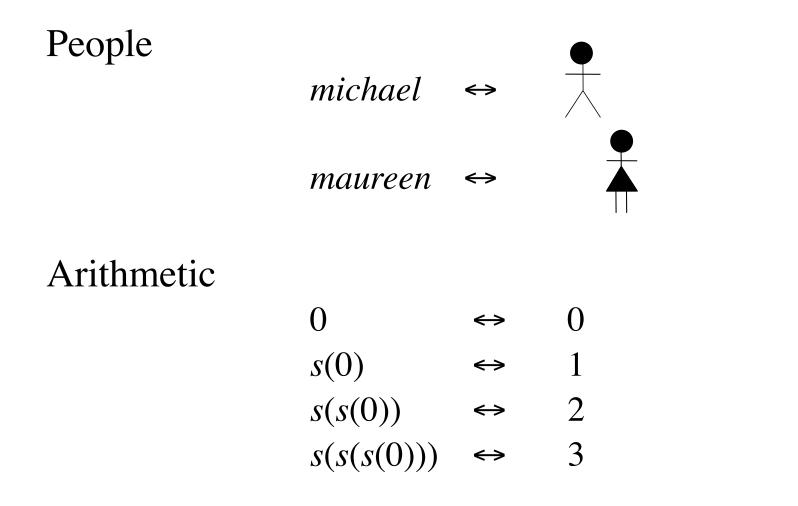
Introduction to Logic Equality

Michael Genesereth Computer Science Department Stanford University

Isomorphic Representation



Homomorphic Representation

People (Nicknames):

$$\begin{array}{ccc} michael & \leftrightarrow & \bullet \\ mike & \leftrightarrow & \swarrow \end{array}$$

Arithmetic:

 $plus(s(0), s(0)) \iff 2$ $times(s(s(0)), s(0)) \iff 2$ $s(s(0)) \iff$

Two Approaches

Approach 1 - Equality:

mike = michael
father(michael) = william

Equivalence of terms in Herbrand universe

Approach 2 - Evaluable Terms (nicknames): 2 = s(s(0)) s(s(0)) + s(s(0)) = s(s(s(s(0))))

New terms that "evaluate" to terms in Herbrand universe

Equality

Partitioning the Herbrand Universe

People:

michael mike	maureen	katherine kathy kate	• • •
-----------------	---------	----------------------------	-------

Arithmetic:

•••	plus(s(0), s(0)) times(s(s(0)), s(0)) s(s(0))	•••
-----	---	-----

Co-referential terms:

plus(s(0), s(0))times(s(s(0)), s(0)) s(s(0))

Equality:

equal(plus(s(0),s(0)), s(s(0)))
equal(times(s(s(0)), s(0)), s(s(0)))

Syntactic Sugar

Formal Syntax:

equal(plus(s(0),s(0)), s(s(0))) equal(times(s(s(0)),s(0)), s(s(0)))

Syntactic Sugar:

plus(s(0),s(0)) = s(s(0))times(s(s(0)),s(0)) = s(s(0))

What is Needed

(1) Axioms that define properties of equality.

michael = mike mike = michael

(2) Axioms that ensure that any true sentence that mentions a given term is also true of the sentence in which that term is replaced by an equivalent term.

 $older(michael, maureen) \Leftrightarrow older(mike, maureen)$

Equality Axioms

Reflexivity

$$\forall x.(x=x)$$

Symmetry

$$\forall x. \forall y. (x=y \implies y=x)$$

Transitivity

$$\forall x. \forall y. \forall z. (x=y \land y=z \Rightarrow x=z)$$

- 1. b = a Premise
- 2. b = c Premise
- 3. $\forall x.(x = x)$ Premise
- 4. $\forall x. \forall y. (x = y \Rightarrow y = x)$ Premise
- 5. $\forall x. \forall y. \forall z. (x = y \land y = z \Rightarrow x = z)$ Premise

1.	b = a	Premise
2.	b = c	Premise
3.	$\forall x.(x = x)$	Premise
4.	$\forall x. \forall y. (x = y \Rightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$b = a \Rightarrow a = b$	2 x UE: 4
7.	a = b	IE: 6, 1

1.	b = a	Premise
2.	b = c	Premise
3.	$\forall x.(x = x)$	Premise
4.	$\forall x. \forall y. (x = y \Rightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$b = a \Rightarrow a = b$	2 x UE: 4
7.	a = b	IE: 6, 1
8	$a = b \land b = c \Rightarrow a = c$	3 x UE: 5

1.	b = a	Premise
2.	b = c	Premise
3.	$\forall x.(x = x)$	Premise
4.	$\forall x. \forall y. (x = y \Rightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$b = a \Rightarrow a = b$	2 x UE: 4
7.	a = b	IE: 6, 1
8.	$a = b \land b = c \Rightarrow a = c$	3 x UE: 5
9.	$a = b \land b = c$	AI: 7, 2
10.	a = c	IE: 8, 9

Substitution Problems

Given:

$$f(a) = b$$
$$f(b) = a$$

Prove:

$$f(f(a)) = a$$

Given:

 $\forall x.older(father(x),x)$ f(bob) = artProve:

older(art,x)

Substitution Axioms

Unary Relations

 $\forall x. \forall y. (p(x) \land x = y \Rightarrow p(y))$

Binary Relations $\forall u. \forall v. \forall x. \forall y. (q(u,v) \land u=x \land v=y \Rightarrow q(x,y))$

Unary Functions $\forall x. \forall y. \forall z. (f(x)=z \land x=y \Rightarrow f(y)=z)$

Binary Functions $\forall u.\forall v.\forall x.\forall y.\forall z.(g(u,v)=z \land u=x \land v=y \Rightarrow g(x,y)=z)$

- 1. f(a) = b Premise
- 2. f(b) = a Premise
- 3. $\forall x.(x = x)$ Premise
- 4. $\forall x. \forall y. (x = y \Rightarrow y = x)$ Premise
- 5. $\forall x. \forall y. \forall z. (x = y \land y = z \Rightarrow x = z)$ Premise

6.
$$\forall x. \forall y. \forall z. (f(x)=z \land x=y \Rightarrow f(y)=z)$$
 Premise

1.	f(a) = b	Premise
2.	f(b) = a	Premise
3.	$\forall x.(x = x)$	Premise
4.	$\forall x. \forall y. (x = y \Longrightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$\forall x. \forall y. \forall z. (f(x) = z \land x = y \Longrightarrow f(y) = z)$	Premise
7.	$f(b)=a \land b=f(a) \Rightarrow f(f(a))=a$	3 x UE: 6
8.	$f(a)=b \Rightarrow b=f(a)$	2 x UE: 4
9.	b=f(a)	IE: 8, 1

1.	f(a) = b	Premise
2.	f(b) = a	Premise
3.	$\forall x.(x = x)$	Premise
4.	$\forall x. \forall y. (x = y \Longrightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$\forall x. \forall y. \forall z. (f(x) = z \land x = y \Longrightarrow f(y) = z)$	Premise
7.	$f(b)=a \land b=f(a) \Rightarrow f(f(a))=a$	3 x UE: 6
8.	$f(a)=b \Rightarrow b=f(a)$	2 x UE: 4
9.	b=f(a)	IE: 8, 1
10.	$f(b) = a \land b = f(a)$	AI: 2, 9
11.	f(f(a))=a	IE: 7, 10

Too tedious. Too long.

Rules of Inference

Equality Introduction (QI):

 $\tau = \tau$ where τ is a ground term

Equality Elimination (QE) - also called *paramodulation*:

 ϕ $\sigma = \tau$ $\phi_{\sigma \leftarrow \tau}$ where σ and τ are ground terms

NB: $\phi_{\sigma \leftarrow \tau}$ is a copy of ϕ with *0 or more* occurrences of σ replaced by τ . NB: Works using the equality in the opposite direction as well.

1.
$$f(a) = b$$

2. $f(b) = a$
3. $f(f(a)) = a$

Premise Premise QE: 2, 1

1. $\forall x.older(father(x),x)$	
-----------------------------------	--

- 2. father(bob) = art
- 3. *older(father(bob),bob)*
- 4. *older(art,bob)*

Premise Premise UE:1 QE: 3, 2

Fitch									
	U	ndo Co	ру І	Paste	Load	Save	Librar	y He	elp
+ -	Objects:								
+ -	Functions:								
	Select All								
□ 1.	f(a)=b						Pre	emise	
□ 2.	f(b)=a						Pre	emise	
□ 3.	f(f(a))=a						Eq	uality E	limination: 1, 2
I									
Pi	remise	Negation Int	roduction	A	ssumption		Jniversal Intr	oduction	Domain Closure
Rei	teration	Negation Eli	imination	Implicat	ion Introductio	n	Universal Eli	mination	Induction
Tru	uthtable	And Introd	duction	Implica	tion Elimination	E	xistential Int	roduction	Equality Introduction
Sł	nortcut	And Elimi	nation	Biconditi	onal Introductio	on	Existential Eli	imination	Equality Elimination
R	eplace	Or Introd	uction	Bicondit	ional Eliminatio	n			Rational Equation
Coalesce Or Elimination				_			Rational Induction		
C	Delete								

Fitch										
	U	ndo	Сору	Paste	Load	Sa	ive	Library	Help)
+ -	Objects:									
+ -	Functions:									
	Select All									
□ 1.	AX:older(father()	X),X)					Premis	se	
□ 2.	father(bob)=art						Premis	se	
□ 3.	older(fath	er(bob),	bob)					Unive	rsal El	imination: 1
□ 4.	older(art,b	oob)						Equali	ty Elir	mination: 2, 3
F	Premise	Negat	ion Introductic	on	Assumption		Univ	versal Introduc	ction	Domain Closure
Re	eiteration	Nega	tion Eliminatio	n Im	plication Introdu	ction	Uni	iversal Elimina	tion	Induction
Truthtable And Introduction			In	plication Elimin	ation	Exist	tential Introdu	ction	Equality Introduction	
Shortcut And Elimination			Bic	Biconditional Introduction Existential Elimination		ation	Equality Elimination			
Replace Or Introduction		Bic	Biconditional Elimination				Rational Equation			
Coalesce Or Elimination								Rational Induction		
	Delete									

Evaluable Terms

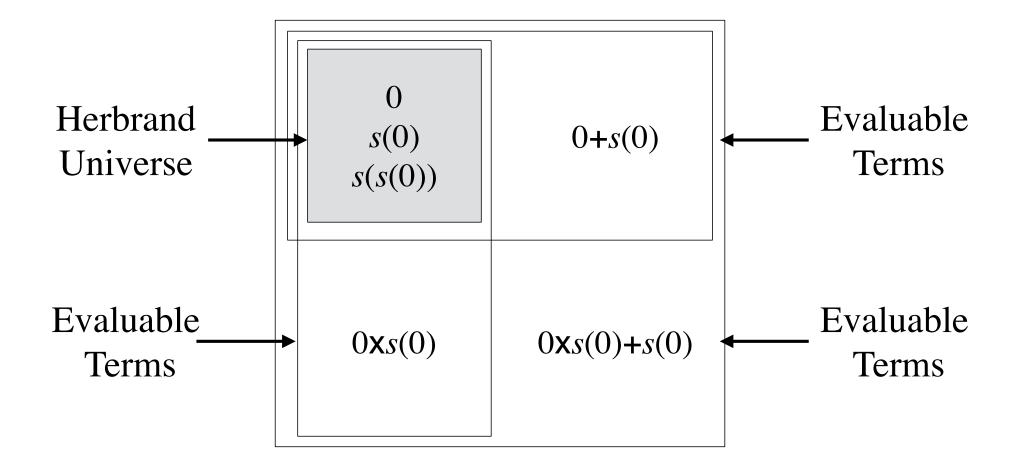
Object Constant: 0, ... Unary Function Constant: *s*

Evaluable Functions: +, x

Binary Relation Constant: =

Evaluable functions do **not** expand Herbrand universe. Evaluable functions refer to terms in Herbrand universe. Evaluable functions defined in terms of other concepts.

Structured Theory



Significance

For induction to work, we must show that a property holds of all terms in the Herbrand Universe.

When some functions are defined in terms of others, it is not necessary to show that a property holds of terms with defined functions (since all sentences involving those terms necessarily have the same truth values as sentences with equivalent terms in the core base).

Upshot: Need to do induction only on objects and functions comprising the Herbrand universe.

Binary Function Example

Object Constant: 0, ... Unary Function Constant: *s*

Binary Evaluable Function: f

Binary Relation Constant: =

Binary Function Problem

Axioms for *f*:

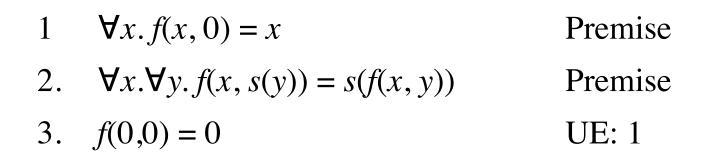
$$\forall y. f(y, 0) = y$$

$$\forall x. \forall x. \forall y. f(x, s(y)) = s(f(x, y))$$

Problem: Prove that 0 is a left identity for f.

 $\forall y. f(0, y) = y$

- 1 $\forall x. f(x, 0) = x$ Premise
- 2. $\forall x. \forall y. f(x, s(y)) = s(f(x, y))$ Premise



1
$$\forall x. f(x, 0) = x$$

2.
$$\forall x. \forall y. f(x, s(y)) = s(f(x, y))$$

3. f(0,0) = 0

4.
$$f(0, c) = c$$

Premise Premise UE: 1 Assumption

1
$$\forall x. f(x, 0) = x$$
 Premise
2. $\forall x. \forall y. f(x, s(y)) = s(f(x, y))$ Premise
3. $f(0,0) = 0$ UE: 1
4. $\begin{cases} f(0, c) = c \\ \forall y. f(0, s(y)) = s(f(0, y)) \\ f(0, s(c)) = s(f(0, c)) \end{cases}$ UE: 2
6. $\begin{cases} f(0, s(c)) = s(f(0, c)) \\ \forall UE: 5 \end{cases}$

1

$$\forall x. f(x, 0) = x$$
 Premise

 2.
 $\forall x. \forall y. f(x, s(y)) = s(f(x, y))$
 Premise

 3.
 $f(0, 0) = 0$
 UE: 1

 4.
 $f(0, c) = c$
 Assumption

 5.
 $f(0, s(y)) = s(f(0, y))$
 UE: 2

 6.
 $f(0, s(c)) = s(f(0, c))$
 UE: 5

 7.
 $f(0, s(c)) = s(c)$
 QE: 6, 4

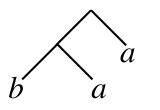
1	$\forall x. f(x, 0) = x$	Premise
2.	$\forall x. \forall y. f(x, s(y)) = s(f(x, y))$	Premise
3.	f(0,0) = 0	UE: 1
4.	f(0, c) = c	Assumption
5.	f(0, c) = c $\forall y. f(0, s(y)) = s(f(0, y))$ f(0, s(c)) = s(f(0, c)) f(0, s(c)) = s(c)	UE: 2
6.	f(0, s(c)) = s(f(0, c))	UE: 5
7.	f(0, s(c)) = s(c)	QE: 6, 4
8.	$f(0, c) = c \Longrightarrow f(0, s(c)) = s(c)$	II: 4, 7

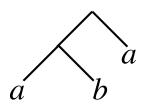
Inductive Proof

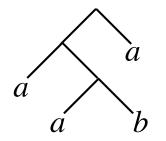
1	$\forall x. f(x, 0) = x$	Premise
2.	$\forall x. \forall y. f(x, s(y)) = s(f(x, y))$	Premise
3.	f(0,0) = 0	UE: 1
4.	f(0, c) = c	Assumption
5.	$\forall y. f(0, s(y)) = s(f(0, y))$	UE: 2
6.	f(0, s(c)) = s(f(0, c)) f(0, s(c)) = s(c)	UE: 5
7.	f(0, s(c)) = s(c)	QE: 6, 4
8.	$f(0, c) = c \Longrightarrow f(0, s(c)) = s(c)$	II: 4, 7
9.	$\forall y.(f(0, y) = y \Longrightarrow f(0, s(y)) = s(y))$	UI: 8

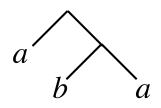
Inductive Proof

1	$\forall x. f(x, 0) = x$	Premise
2.	$\forall x. \forall y. f(x, s(y)) = s(f(x, y))$	Premise
3.	f(0,0) = 0	UE: 1
4.	f(0, c) = c	Assumption
5.	$\forall y. f(0, s(y)) = s(f(0, y))$	UE: 2
6.	f(0, s(c)) = s(f(0, c))	UE: 5
7.	f(0, s(c)) = s(c)	QE: 6, 4
8.	$f(0, c) = c \Longrightarrow f(0, s(c)) = s(c)$	II: 4, 7
9.	$\forall y.(f(0, y) = y \Longrightarrow f(0, s(y)) = s(y))$	UI: 8
10.	$\forall y. f(0, y) = y$	Ind: 3, 9



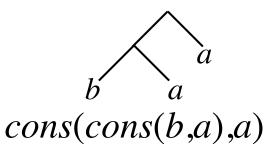


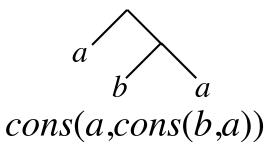




Tree Vocabulary

Object constants: *a*, *b* Unary function constants: *cons*

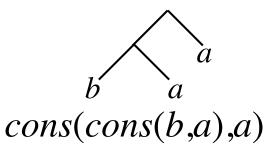


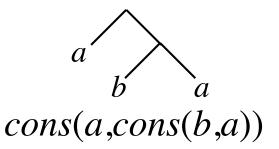


Binary relation constant: equal

Tree Vocabulary

Object constants: *a*, *b* Unary function constants: *cons*

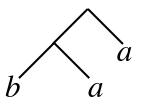


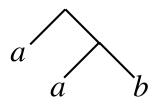


Unary evaluable function: rev

Binary relation constant: equal

Reversing Trees





Reversing Atomic Trees:

rev(a) = arev(b) = b

Reversing Compound Trees:

 $\forall x.(rev(cons(x, y)) = cons(rev(y), rev(x)))$

Reverse is its own inverse. (In other words, the result of reversing a list twice is equal to the original list.)

 $\forall x.rev(rev(x)) = x$

Let's prove it using induction.

Hint: *rev* is defined in terms of *cons* so we just need to do induction on *cons*.

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption
7.	$rev(rev(c)) = c \land rev(rev(d)) = d$ $rev(rev(cons(c, d))) = rev(rev(cons(c, d)))$	QI

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption
7.	rev(rev(cons(c, d))) = rev(rev(cons(c, d)))	QI
8.	rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c)))	UE QE: 7, 3
9.	rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d)))	UE QE: 8, 3
	I	

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption
7.	rev(rev(cons(c, d))) = rev(rev(cons(c, d)))	QI
8.	rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c)))	UE QE: 7, 3
9.	rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d)))	UE QE: 8, 3
10.	rev(rev(cons(c, d))) = cons(c, d)	2 x QE: 9, 6

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption
7.	rev(rev(cons(c, d))) = rev(rev(cons(c, d)))	QI
8.	rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c)))	UE QE: 7, 3
9.	rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))))	UE QE: 8, 3
10.	rev(rev(cons(c, d))) = cons(c, d))	2 x QE: 9, 6
11.	$rev(rev(c))=c \land rev(rev(d))=d \Rightarrow rev(rev(cons(c, d)))=cons(c, d)$	II: 6, 10
12.	$\forall x. \forall y. (rev(rev(x)) = x \land rev(rev(y)) = y \Rightarrow$	2 x UI: 11
	rev(rev(cons(x, y))) = cons(x y))	

1.	rev(a) = a	Premise
2.	rev(b) = b	Premise
3.	$\forall x. \forall y. (rev(cons(x, y)) = cons(rev(y), rev(x)))$	Premise
4.	rev(rev(a)) = a	QE: 1, 1
5.	rev(rev(b)) = b	QE: 2, 2
6.	$rev(rev(c)) = c \land rev(rev(d)) = d$	Assumption
7.	rev(rev(cons(c, d))) = rev(rev(cons(c, d)))	QI
8.	rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c)))	UE QE: 7, 3
9.	rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))))	UE QE: 8, 3
10.	rev(rev(cons(c, d))) = cons(c, d))	2 x QE: 9, 6
11.	$rev(rev(c)) = c \land rev(rev(d)) = d \Rightarrow rev(rev(cons(c, d))) = cons(c, d)$	II: 6, 10
12.	$\forall x. \forall y. (rev(rev(x)) = x \land rev(rev(y)) = y \Rightarrow$	2 x UI: 11
	rev(rev(cons(x, y))) = cons(x y))	
13.	$\forall x: (rev(rev(x)) = x)$	Ind: 4, 5, 12

Polynomial Arithmetic

Signature for Arithmetic

```
Object Constant: 0
Unary Function Constant: s
```

Binary Evaluable Functions: *plus* - addition *times* - multiplication

Binary Relation Constant: =

More Syntactic Sugar

Formal Syntax:

equal(plus(s(0),s(0)), s(s(0))) equal(times(s(s(0)),s(0)), s(s(0)))

Syntactic Sugar:

1 + 1 = 2 $2 \times 1 = 2$ Addition:

$$\forall x.(x + 0 = x)$$

$$\forall x.\forall y.(x + (y + 1) = (x + y) + 1)$$

Multiplication:

$$\forall y.(0 \times y = 0)$$

$$\forall x.\forall y.((x + 1) \times y = (x \times y) + y)$$

Equality Proof

٠

- 1. b = a Premise
- 2. b = c Premise
- 3. $\forall x.(x = x)$ Premise
- 4. $\forall x. \forall y. (x = y \Rightarrow y = x)$ Premise
- 5. $\forall x. \forall y. \forall z. (x = y \land y = z \Rightarrow x = z)$ Premise

Long Messy Proofs

1.	f(a) = b	Premise
2.	f(b) = a	Premise
3.	$\forall x.(x=x)$	Premise
4.	$\forall x. \forall y. (x = y \Longrightarrow y = x)$	Premise
5.	$\forall x. \forall y. \forall z. (x = y \land y = z \Longrightarrow x = z)$	Premise
6.	$\forall x. \forall y. \forall z. (f(x) = z \land x = y \Longrightarrow f(y) = z)$	Premise
7.	$f(b)=a \land b=f(a) \Rightarrow f(f(a))=a$	3 x UE: 6
8.	$f(a)=b \Rightarrow b=f(a)$	2 x UE: 4
9.	b=f(a)	IE: 8, 1
10.	$f(b) = a \land b = f(a)$	AI: 2, 9
11.	f(f(a))=a	IE: 7, 10

Rational Equation

Rule of Inference (Rational Equation):

 $\sigma = \tau$ where σ and τ are equivalent polynomials

Example:

 $(c+1)^*(c+1) = c^*c+2^*c+1$

Rational Induction

+ definable in terms of *s*, so we need only do induction on *s*.

$$\begin{split} &\phi[0] \\ &\forall x.(\phi[x] \Rightarrow \phi[s(x)]) \end{split}$$

 $\forall x. \phi[x]$

Rational Induction (since x + 1 = s(x))

$$\begin{split} &\phi[0] \\ &\forall x.(\phi[x] \Rightarrow \phi[x+1]) \end{split}$$

 $\forall x. \phi[x]$

Consider the following function.

$$f(0) = 0$$

$$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$$

f(z) is 2 x the sum of numbers from 0 through z.

Function definition:

$$f(0) = 0$$

$$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$$

Claim: *f* can be defined *non-recursively* in terms of + and x.

$$\forall z.(f(z) = z \ge (z+1))$$

Let's prove it, using induction.

- $1 \quad f(0) = 0$
- 2. $\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$

Premise Premise

- $1 \quad f(0) = 0$
- 2. $\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$
- 3. $f(0) = 0 \times (0 + 1)$

Premise Premise Equation QE

Rational Equation: $0 \times (0 + 1) = 0$

1 f(0) = 0	Premise
2. $\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	Premise
3. $f(0) = 0 \times (0 + 1)$	Equation QE
4. $f(c) = c \mathbf{x} (c + 1)$	Assumption

We want to prove: $\forall z.(f(z) = z \times (z + 1) \Rightarrow f(z+1) = (z + 1) \times ((z + 1) + 1))$

To do that, we need to prove: $f(c) = c \times (c+1) \Rightarrow f(c+1) = (c+1) \times ((c+1) + 1)$

Then we can apply Universal Introduction and Induction.

1 f(0) = 0	
2. $\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	
3. $f(0) = 0 \times (0 + 1)$	
4. $f(c) = c \times (c+1)$	
4. $f(c) = c \times (c+1)$ 5. $f(c+1) = f(c) + (c+1) + (c+1)$	

Premise Premise Equation QE Assumption UE: 2

1	f(0) = 0
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$
3.	$f(0) = 0 \times (0 + 1)$
4.	$f(c) = c \times (c+1)$
5.	f(c+1) = f(c) + (c+1) + (c+1)
6.	$f(c) = c \times (c+1)$ f(c+1) = f(c) + (c+1) + (c+1) $f(c+1) = c \times (c+1) + (c+1) + (c+1)$

Premise Premise Equation QE Assumption UE: 2 QE: 5, 4

1	f(0) = 0
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$
	$f(0) = 0 \times (0 + 1)$
4.	$f(c) = c \times (c+1)$
5.	f(c+1) = f(c) + (c+1) + (c+1)
6.	$f(c+1) = c \times (c+1) + (c+1) + (c+1)$
7.	$f(c) = c \times (c+1)$ f(c+1) = f(c) + (c+1) + (c+1) $f(c+1) = c \times (c+1) + (c+1) + (c+1)$ $f(c+1) = c \times c + c + c + 1 + c + 1$

Premise
Premise
Equation QE
Assumption
UE: 2
QE: 5, 4
Equation QE

Rational Equation: $c \times (c+1) = c \times c + c$

1	f(0) = 0	Premise
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	Premise
	$f(0) = 0 \times (0 + 1)$	Equation QE
4.	$f(c) = c \times (c+1)$	Assumption
5.	f(c+1) = f(c) + (c+1) + (c+1)	UE: 2
6.	$f(c+1) = c \times (c+1) + (c+1) + (c+1)$	QE: 5, 4
7.	$f(c+1) = c \times c + c + c + 1 + c + 1$	Equation QE
8.	$f(c) = c \times (c+1)$ f(c+1) = f(c) + (c+1) + (c+1) $f(c+1) = c \times (c+1) + (c+1) + (c+1)$ $f(c+1) = c \times c + c + c + 1 + c + 1$ $f(c+1) = c \times c + 3 \times c + 2$	Equation QE

Rational Equation: $c + c + 1 + c + 1 = 3 \times c + 2$

1	f(0) = 0	Premise
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	Premise
3.	$f(0) = 0 \times (0 + 1)$	Equation QE
4.	$f(c) = c \times (c+1)$	Assumption
5.	f(c+1) = f(c) + (c+1) + (c+1) $f(c+1) = c \times (c+1) + (c+1) + (c+1)$ $f(c+1) = c \times c + c + c + 1 + c + 1$	UE: 2
6.	$f(c+1) = c \times (c+1) + (c+1) + (c+1)$	QE: 5, 4
7.	$f(c+1) = c \times c + c + c + 1 + c + 1$	Equation QE
8.	$f(c+1) = c \times c + 3 \times c + 2$	Equation QE
9.	$f(c+1) = (c+1) \times ((c+1) + 1)$	Equation QE

Rational Equation: $c \times c + 3 \times c + 2 = (c+1) \times ((c+1) + 1)$

1	f(0) = 0	Premise
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	Premise
3.	$f(0) = 0 \times (0 + 1)$	Equation QE
4.	$f(c) = c \times (c+1)$	Assumption
5.	f(c+1) = f(c) + (c+1) + (c+1) $f(c+1) = c \times (c+1) + (c+1) + (c+1)$ $f(c+1) = c \times c + c + c + 1 + c + 1$	UE: 2
6.	$f(c+1) = c \mathbf{X} (c+1) + (c+1) + (c+1)$	QE: 5, 4
7.	$f(c+1) = c \mathbf{X} c + c + c + 1 + c + 1$	Equation QE
8.	$f(c+1) = c \mathbf{x} c + 3 \mathbf{x} c + 2$	Equation QE
9.	$f(c+1) = (c+1) \times ((c+1) + 1)$	Equation QE
10	$f(c) = c \times (c+1) \Rightarrow f(c+1) = (c+1) \times ((c+1) + 1)$	II: 4, 9

1	f(0) = 0	Premise
2.	$\forall z.(f(z+1) = f(z) + (z+1) + (z+1))$	Premise
3.	$f(0) = 0 \times (0 + 1)$	Equation QE
4.	$f(c) = c \times (c+1)$	Assumption
5.	f(c+1) = f(c) + (c+1) + (c+1)	UE: 2
6.	$f(c+1) = c \times (c+1) + (c+1) + (c+1)$	QE: 5, 4
7.	$f(c+1) = c \times c + c + c + 1 + c + 1$	Equation QE
8.	$f(c+1) = c \times c + 3 \times c + 2$	Equation QE
9.	$f(c+1) = (c+1) \times ((c+1) + 1)$	Equation QE
10	$f(c) = c \times (c+1) \Rightarrow f(c+1) = (c+1) \times ((c+1) + 1)$	II: 4, 9
11.	$\forall z.(f(z) = z \times (z+1) \Rightarrow f(z+1) = (z+1) \times ((z+1) + 1))$	UI: 10
12.	$\forall z.(f(z) = z \times (z+1))$	Ind: 3, 11

	Fitch						
		Undo	Сору	Paste	Load	Save	Help
+ -	Objects:						
+ -	Functions:						
	Select All						
□ 1.	f(0)=0						Premise
□ 2.	AZ:f(Z+1)	=f(Z)+((Z-	+1)+(Z+1))				Premise
□ 3.	0*(0+1)=0						Equation
□ 4.	f(0)=0*(0+	-1)					Equality Elimination: 3, 1
□ 5.	f(c)=c*(c+1)					Assumption
□ 6.	f(c+1)=f(c)+((c+1)+(c+1))						Universal Elimination: 2
□ 7.	f(c+1)=	c*(c+1)+((c+1)+(c+1))			Equality Elimination: 5, 6
□ 8.	$c^{*}(c+1)+((c+1)+(c+1))=(c+1)^{*}((c+1)+1)$						Equation
□ 9.	f(c+1)=(c+1)*((c+1)+1)						Equality Elimination: 8, 7
□ 10.	$f(c)=c^*(c+1) \Longrightarrow f(c+1)=(c+1)^*((c+1)+1)$						Implication Introduction: 5,9
□ 11.	AZ:(f(Z)=Z)	$Z^{*}(Z+1) = $	> f(Z+1)=(Z	Z+1)*((Z+1)+1))		Universal Introduction: 10
□ 12.	AZ:f(Z)=Z	Z*(Z+1)					Rational Induction
Goal	AZ:f(Z)=Z	*(Z+1)					Complete

	Fitch						
		Undo	Сору	Paste	Load	Save	Help
+ -	Objects:						
+ -	Functions:						
	Select All						
□ 1.	f(0)=0						Premise
□ 2.	AZ:f(Z+1)	=f(Z)+((Z-	+1)+(Z+1))				Premise
□ 3.	0*(0+1)=0						Equation
□ 4.	f(0)=0*(0+	-1)					Equality Elimination: 3, 1
□ 5.	f(c)=c*(c+1)					Assumption
□ 6.	f(c+1)=f(c)+((c+1)+(c+1))						Universal Elimination: 2
□ 7.	f(c+1)=	c*(c+1)+((c+1)+(c+1))			Equality Elimination: 5, 6
□ 8.	$c^{*}(c+1)+((c+1)+(c+1))=(c+1)^{*}((c+1)+1)$						Equation
□ 9.	f(c+1)=(c+1)*((c+1)+1)						Equality Elimination: 8, 7
□ 10.	$f(c)=c^*(c+1) \Longrightarrow f(c+1)=(c+1)^*((c+1)+1)$						Implication Introduction: 5,9
□ 11.	AZ:(f(Z)=Z)	$Z^{*}(Z+1) = $	> f(Z+1)=(Z	Z+1)*((Z+1)+1))		Universal Introduction: 10
□ 12.	AZ:f(Z)=Z	Z*(Z+1)					Rational Induction
Goal	AZ:f(Z)=Z	*(Z+1)					Complete

Yet Another Problem

Recursive Function:

$$g(0) = 0$$

 $g(z + 1) = g(z) + (2 \times z + 1)$

Non-recursive definition in terms of **x**:

$$g(z) = z \times z$$

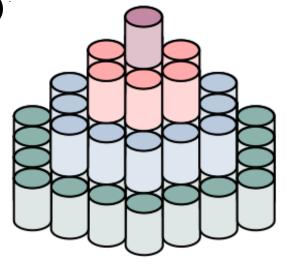
Z	g(z)
0	0
1	1
2	4
3	9

And Another

Number of cans per layer (starting at 1)⁻

$$h(1) = 1$$

 $h(z + 1) = h(z) + 6 \times z$



Non-recursive definition in terms of + and x:

 $h(z+1) = 3 \times z \times (z+1) + 1$

