
Introduction to Logic
Equality

Michael Genesereth
Computer Science Department

Stanford University



People
      michael ↔

      maureen ↔

Arithmetic
      0  ↔ 0
      s(0)  ↔ 1
      s(s(0))  ↔ 2
      s(s(s(0)))  ↔ 3

Isomorphic Representation



People (Nicknames):

     michael ↔
      mike ↔

Arithmetic:
                    plus(s(0), s(0))        ↔
                    times(s(s(0)), s(0))  ↔    2
                    s(s(0))                     ↔

Homomorphic Representation



Approach 1 - Equality:
mike = michael

father(michael) = william

Equivalence of terms in Herbrand universe

Approach 2 - Evaluable Terms (nicknames):
2 = s(s(0))

s(s(0)) + s(s(0)) = s(s(s(s(0))))

New terms that "evaluate" to terms in Herbrand universe

Two Approaches



Equality



People:

Arithmetic:
              

Partitioning the Herbrand Universe

. . .
plus(s(0), s(0))

times(s(s(0)), s(0))
s(s(0))

. . .

michael
mike maureen

katherine
kathy
kate

. . .



Co-referential terms:

Equality:
                     equal(plus(s(0),s(0)),  s(s(0)))
                     equal(times(s(s(0)), s(0)),  s(s(0)))

Equality

plus(s(0), s(0))
times(s(s(0)), s(0))

s(s(0))



Formal Syntax:

                     equal(plus(s(0),s(0)),  s(s(0)))
                     equal(times(s(s(0)),s(0)),  s(s(0)))

Syntactic Sugar:

                      plus(s(0),s(0)) = s(s(0))
                times(s(s(0)),s(0)) = s(s(0))

Syntactic Sugar



(1) Axioms that define properties of equality.

michael = mike
mike = michael

(2) Axioms that ensure that any true sentence that 
mentions a given term is also true of the sentence in 
which that term is replaced by an equivalent term.

older(michael, maureen) ⇔ older(mike, maureen)

What is Needed



Reflexivity

∀x.(x=x)
Symmetry

∀x.∀y.(x=y  ⇒ y=x)

Transitivity

∀x.∀y.∀z.(x=y ∧ y=z ⇒ x=z)

Equality Axioms



Equality Proof



Equality Proof



Equality Proof



Equality Proof



Given:
    f(a) = b
    f(b) = a
Prove: 
    f(f(a)) = a 

Given:
    ∀x.older(father(x),x)
    f(bob) = art
Prove: 
    older(art,x)

Substitution Problems



Unary Relations
∀x.∀y.(p(x) ∧ x=y ⇒ p(y))

Binary Relations
∀u.∀v.∀x.∀y.(q(u,v) ∧ u=x ∧ v=y ⇒ q(x,y))

Unary Functions
∀x.∀y.∀z.(f(x)=z ∧ x=y ⇒ f(y)=z)

Binary Functions
∀u.∀v.∀x.∀y.∀z.(g(u,v)=z ∧ u=x ∧ v=y ⇒ g(x,y)=z)

Substitution Axioms



Substitution Proof



Substitution Proof



Substitution Proof

Too tedious.  Too long.



Rules of Inference

Equality Introduction (QI):

τ = τ
where τ is a ground term

Equality Elimination (QE) - also called paramodulation:

φ
     σ = τ

                                               φσ←τ
where σ and τ are ground terms

NB: φσ←τ is a copy of φ with 0 or more occurrences of σ replaced by τ.
NB: Works using the equality in the opposite direction as well.



Substitution Proof

1. f(a) = b Premise
2. f(b) = a Premise
3. f(f(a)) = a QE: 2, 1



Substitution Proof

1. ∀x.older(father(x),x) Premise
2. father(bob) = art Premise
3. older(father(bob),bob) UE:1
4. older(art,bob) QE: 3, 2







Evaluable Terms



Object Constant: 0, ...
Unary Function Constant: s

 
Evaluable Functions: +, x

Binary Relation Constant: =

Evaluable functions do not expand Herbrand universe. 
Evaluable functions refer to terms in Herbrand universe.
Evaluable functions defined in terms of other concepts.

Signature



Structured Theory

0
s(0)

s(s(0))

0xs(0)

0+s(0)

0xs(0)+s(0)

Herbrand
Universe

Evaluable
 Terms

Evaluable
 Terms

Evaluable
 Terms



Significance

For induction to work, we must show that a property holds 
of all terms in the Herbrand Universe.

When some functions are defined in terms of others, it is not 
necessary to show that a property holds of terms with 
defined functions (since all sentences involving those terms 
necessarily have the same truth values as sentences with 
equivalent terms in the core base).

Upshot: Need to do induction only on objects and functions 
comprising the Herbrand universe.



Object Constant: 0, ...
Unary Function Constant: s

 
Binary Evaluable Function: f

Binary Relation Constant: =

Binary Function Example



Axioms for f:

∀y. f(y, 0) = y
∀x.∀x.∀y. f(x, s(y)) = s(f(x, y)) 

Problem: Prove that 0 is a left identity for f. 

∀y. f(0, y) = y

Binary Function Problem



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption
5.  | ∀y. f(0, s(y)) = s(f(0, y)) UE: 2
6.  | f(0, s(c)) = s(f(0, c)) UE: 5



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption
5.  | ∀y. f(0, s(y)) = s(f(0, y)) UE: 2
6.  | f(0, s(c)) = s(f(0, c)) UE: 5
7.  | f(0, s(c)) = s(c) QE: 6, 4



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption
5.  | ∀y. f(0, s(y)) = s(f(0, y)) UE: 2
6.  | f(0, s(c)) = s(f(0, c)) UE: 5
7.  | f(0, s(c)) = s(c) QE: 6, 4
8.  f(0, c) = c ⇒ f(0, s(c)) = s(c) II: 4, 7



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption
5.  | ∀y. f(0, s(y)) = s(f(0, y)) UE: 2
6.  | f(0, s(c)) = s(f(0, c)) UE: 5
7.  | f(0, s(c)) = s(c) QE: 6, 4
8.  f(0, c) = c ⇒ f(0, s(c)) = s(c) II: 4, 7
9. ∀y.(f(0, y) = y ⇒ f(0, s(y)) = s(y)) UI: 8



Inductive Proof

1 ∀x. f(x, 0) = x Premise
2. ∀x.∀y. f(x, s(y)) = s(f(x, y)) Premise
3. f(0,0) = 0 UE: 1
4.  | f(0, c) = c Assumption
5.  | ∀y. f(0, s(y)) = s(f(0, y)) UE: 2
6.  | f(0, s(c)) = s(f(0, c)) UE: 5
7.  | f(0, s(c)) = s(c) QE: 6, 4
8.  f(0, c) = c ⇒ f(0, s(c)) = s(c) II: 4, 7
9. ∀y.(f(0, y) = y ⇒ f(0, s(y)) = s(y)) UI: 8
10. ∀y. f(0, y) = y Ind: 3, 9



Trees

ab
a

ba
a

a
a

ba ab
a



Object constants: a, b
Unary function constants: cons

        cons(cons(b,a),a)                 cons(a,cons(b,a))

Binary relation constant: equal

Tree Vocabulary

ab
a

ab
a



Object constants: a, b
Unary function constants: cons

        cons(cons(b,a),a)                 cons(a,cons(b,a))

Unary evaluable function: rev

Binary relation constant: equal

Tree Vocabulary

ab
a

ab
a



Reversing Atomic Trees:

rev(a) = a
rev(b) = b

Reversing Compound Trees:

∀x.(rev(cons(x, y))= cons(rev(y), rev(x)))

Reversing Trees

ab
a

ba
a



Reverse is its own inverse.  (In other words, the result of 
reversing a list twice is equal to the original list.)

∀x.rev(rev(x)) = x

Let's prove it using induction.

Hint: rev is defined in terms of cons so we just need to do 
induction on cons.

Problem



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d) QE: 9, 6



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d) QE: 9, 6



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d) QE: 9, 6



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d) 2 x QE: 9, 6

11.  rev(rev(c))=c ∧ rev(rev(d))=d ⇒ rev(rev(cons(c, d)))=cons(c, d) II: 6, 10



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d)))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d)) 2 x QE: 9, 6

11.  rev(rev(c))=c ∧ rev(rev(d))=d ⇒ rev(rev(cons(c, d)))=cons(c, d) II: 6, 10

12. ∀x.∀y.(rev(rev(x)) = x ∧ rev(rev(y)) = y ⇒
                                                    rev(rev(cons(x, y))) = cons(x y))

2 x UI: 11



Proof By Induction
1. rev(a) = a Premise

2. rev(b) = b Premise

3. ∀x.∀y.(rev(cons(x, y))= cons(rev(y), rev(x))) Premise

4. rev(rev(a)) = a QE: 1, 1

5. rev(rev(b)) = b QE: 2, 2

6.  | rev(rev(c)) = c ∧ rev(rev(d)) = d Assumption

7.  | rev(rev(cons(c, d))) = rev(rev(cons(c, d))) QI

8.  | rev(rev(cons(c, d))) = rev(cons(rev(d), rev(c))) UE QE: 7, 3

9.  | rev(rev(cons(c, d))) = cons(rev(rev(c)), rev(rev(d)))) UE QE: 8, 3

10.  | rev(rev(cons(c, d))) = cons(c, d)) 2 x QE: 9, 6

11.  rev(rev(c))=c ∧ rev(rev(d))=d ⇒ rev(rev(cons(c, d)))=cons(c, d) II: 6, 10

12. ∀x.∀y.(rev(rev(x)) = x ∧ rev(rev(y)) = y ⇒
                                                    rev(rev(cons(x, y))) = cons(x y))

2 x UI: 11

13. ∀x:(rev(rev(x)) = x) Ind: 4, 5, 12



Polynomial Arithmetic



Object Constant: 0  
Unary Function Constant: s

Binary Evaluable Functions:
    plus - addition
    times - multiplication

Binary Relation Constant: =

Signature for Arithmetic



Formal Syntax:

                     equal(plus(s(0),s(0)),  s(s(0)))
                     equal(times(s(s(0)),s(0)),  s(s(0)))

Syntactic Sugar:

1 + 1 = 2
2 x 1 = 2

More Syntactic Sugar



Definitions of Evaluable Arithmetic Functions

Addition:
∀x.(x + 0 = x)

∀x.∀y.(x +(y + 1) =(x + y) + 1) 

Multiplication:
∀y.(0 x y = 0)

∀x.∀y.((x + 1) x y = (x x y) + y)



Equality Proof



Long Messy Proofs



Rule of Inference (Rational Equation):

σ = τ
where σ and τ are equivalent polynomials 

Example:

(c+1)*(c+1) = c*c+2*c+1

Rational Equation



Rational Induction

+ definable in terms of s, so we need only do induction on s.  

φ[0]
∀x.(φ[x] ⇒ φ[s(x)])

 ∀x.φ[x]

Rational Induction (since x + 1 = s(x))

φ[0]
∀x.(φ[x] ⇒ φ[x + 1])

 ∀x.φ[x]



Consider the following function. 

f(0) = 0
∀z.(f(z+1) = f(z) + (z+1) + (z+1))

f(z) is 2 x the sum of numbers from 0 through z.

Problem



Function definition: 

f(0) = 0
∀z.(f(z+1) = f(z) + (z+1) + (z+1))

Claim: f can be defined non-recursively in terms of + and x.

∀z.(f(z) = z x (z + 1))

Let's prove it, using induction.

Problem



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE

Rational Equation:
0 x (0 + 1) = 0



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c + 1) Assumption

We want to prove:
∀z.(f(z) = z x (z + 1) ⇒ f(z+1) = (z + 1) x ((z + 1) + 1))

To do that, we need to prove:
f(c) = c x (c + 1) ⇒ f(c+1) = (c + 1) x ((c + 1) + 1)

Then we can apply Universal Introduction and Induction.



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4
7.  | f(c+1) = c x c + c + c + 1 + c + 1 Equation QE

Rational Equation:
c x (c+1) = c x c + c



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4
7.  | f(c+1) = c x c + c + c + 1 + c + 1 Equation QE
8.  | f(c+1) = c x c + 3 x c + 2 Equation QE

Rational Equation:
c + c + 1 + c + 1 = 3 x c + 2



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4
7.  | f(c+1) = c x c + c + c + 1 + c + 1 Equation QE
8.  | f(c+1) = c x c + 3 x c + 2 Equation QE
9.  | f(c+1) = (c+1) x ((c+1) + 1) Equation QE

Rational Equation:
c x c + 3 x c + 2 = (c+1) x ((c+1) + 1)



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4
7.  | f(c+1) = c x c + c + c + 1 + c + 1 Equation QE
8.  | f(c+1) = c x c + 3 x c + 2 Equation QE
9.  | f(c+1) = (c+1) x ((c+1) + 1) Equation QE
10. f(c) = c x (c+1) ⇒  f(c+1) = (c+1) x ((c+1) + 1) II: 4, 9



Problem
1 f(0) = 0 Premise
2. ∀z.(f(z+1) = f(z) + (z+1) + (z+1)) Premise
3. f(0) = 0 x (0 + 1) Equation QE
4.  | f(c) = c x (c+1) Assumption
5.  | f(c+1) = f(c) + (c+1) + (c+1) UE: 2
6.  | f(c+1) = c x (c+1) + (c+1) + (c+1) QE: 5, 4
7.  | f(c+1) = c x c + c + c + 1 + c + 1 Equation QE
8.  | f(c+1) = c x c + 3 x c + 2 Equation QE
9.  | f(c+1) = (c+1) x ((c+1) + 1) Equation QE
10. f(c) = c x (c+1) ⇒  f(c+1) = (c+1) x ((c+1) + 1) II: 4, 9
11. ∀z.(f(z) = z x (z+1) ⇒ f(z+1) = (z+1) x ((z+1) + 1)) UI: 10
12. ∀z.(f(z) = z x (z+1)) Ind: 3 , 11







Recursive Function:

  g(0) = 0
  g(z + 1) = g(z) + (2 x z + 1)

Non-recursive definition in terms of x:

 g(z) = z x z

Yet Another Problem

z g(z)
0 0
1 1
2 4
3 9



Number of cans per layer (starting at 1):

  h(1) = 1
  h(z + 1) = h(z) + 6 x z

Non-recursive definition in terms of + and x:

 h(z+1) = 3 x z x (z + 1) + 1

And Another




