
Introduction to Logic
Resolution

Michael Genesereth
Computer Science Department

Stanford University

Assumption
 p(a)
 p(f(a))
 p(x) => q(x)
 ~p(x) => q(x)

Universal Elimination
 ∀x.∀y.q(x,y)

q(a,a) q(a,[c])
q(a,b) q(a,[c])
q(a, f(a)) q(a, f([c]))
 … …

Problem With Natural Deduction

The Resolution Principle is a rule of inference. Using the
Resolution Principle alone, it is possible to build a proof
system (called Resolution) that can prove everything that
can be proved in Fitch (without domain closure or
induction).

There is no need to make arbitrary assumptions or
replacements.

The search space using the Resolution Principle is better
controlled than that of natural deduction systems.

Relies on functional notation.

Resolution Principle

Clausal Form

Unification

Resolution Rule of Inference

Unsatisfiability

Logical Entailment

Answer Extraction

Programme

Clausal Form

Resolution works only on expressions in clausal form.

Fortunately, it is possible to convert any set of sentences
into an equally satisfiable set of expressions in clausal
form.

Clausal Form

A literal is either an atomic sentence or a negation of an
atomic sentence.

p(a), ¬p(y)

A clausal sentence is either a literal or a disjunction of
literals.

p(a), ¬p(y), p(a) ∨ ¬p(y)

A clause is a set of literals.

{p(a)}, {¬p(y)}, {p(a),¬p(y)}

Clausal Form

The empty clause {} is unsatisfiable.

Why? It is equivalent to an empty disjunction.

Empty Sets

Inseado

€

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2)∧ (ϕ1∨¬ϕ2)

Implications Out:

Inseado

€

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2)∧ (ϕ1∨¬ϕ2)

¬¬ϕ → ϕ

¬(ϕ1 ∧ϕ2) → ¬ϕ1 ∨¬ϕ2
¬(ϕ1 ∨ϕ2) → ¬ϕ1 ∧¬ϕ2
¬∀ν.ϕ → ∃ν.¬ϕ
¬∃ν.ϕ → ∀ν.¬ϕ

Implications Out:

Negations In:

Inseado

∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Inseado

∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Existentials Out (Outside in)

∃x.p(x) → p(a)

Inseado

∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Existentials Out (Outside in)

∃x.p(x) → p(a)

∀x.(p(x)∧ ∃z.q(x, y, z)) → ∀x.(p(x)∧ q(x, y, f (x, y)))

Inseado

Alls Out

∀x.(p(x)∧ q(x, y, f (x, y))) → p(x)∧ q(x, y, f (x, y))

Inseado

Alls Out

Distribution

∀x.(p(x)∧ q(x, y, f (x, y))) → p(x)∧ q(x, y, f (x, y))

€

ϕ1∨ (ϕ2 ∧ϕ3) → (ϕ1∨ϕ2)∧ (ϕ1∨ϕn)
(ϕ1∧ϕ2)∨ϕ3 → (ϕ1∨ϕ3)∧ (ϕ2 ∨ϕ3)
ϕ ∨ (ϕ1∨ ...∨ϕn) → (ϕ ∨ϕ1∨ ...∨ϕn)
(ϕ1∨ ...∨ϕn)∨ϕ → (ϕ1∨ ...∨ϕn ∨ϕ)
ϕ ∧ (ϕ1∧ ...∧ϕn) → (ϕ ∧ϕ1∧ ...∧ϕn)
(ϕ1∧ ...∧ϕn)∧ϕ → (ϕ1∧ ...∧ϕn ∧ϕ)

Inseado

Operators Out
ϕ1 ∧ ... ∧ϕn → ϕ1

...
ϕn

ϕ1 ∨ ... ∨ϕn → {ϕ1,..., ϕn}

Inseado

Example

∃y.(g(y)∧∀z.(r(z)⇒ f (y,z)))
I ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
N ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
S ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
E g(greg)∧∀z.(¬r(z)∨ f (greg, z)))
A g(greg)∧ (¬r(z)∨ f (greg, z)))
D g(greg)∧ (¬r(z)∨ f (greg, z)))
O {g(greg)}

{¬r(z), f (greg, z)}

Example

¬∃y.(g(y)∧∀z.(r(z)⇒ f (y, z)))
I ¬∃y.(g(y)∧∀z.(¬r(z)∨ f (y,z)))
N ¬∃y.(g(y)∧∀z.(¬r(z)∨ f (y,z)))

∀y.¬(g(y)∧∀z.(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨¬∀z.(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨∃z.¬(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨∃z.(¬¬r(z)∧¬f (y,z)))
∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))

S ∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))

Example

€

∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))
E ∀y.(¬g(y)∨ (r(h(y))∧¬f (y,h(y))))
A ¬g(y)∨ (r(h(y))∧¬f (y,h(y)))
D (¬g(y)∨ r(h(y)))∧ (¬g(y)∨¬f (y,h(y)))
O {¬g(y), r(h(y))}

{¬g(y),¬f (y,h(y))}

Example

Bad News: The result of converting a set of sentences is
not necessarily logically equivalent to the original set of
sentences. Why? Introduction of new constants and
functions.

Good News: The result of converting a set of sentences is
satisfiable in the expanded language if and only if the
original set of sentences is satisfiable in the original
language. Important because we use satisfiability to
determine logical entailment.

Potential problem with domain closure and induction
eliminated by keeping new constants separate form old.

Clausal Form

Unification

Unification

Unification is the process of determining whether two
expressions can be unified, i.e. made identical by
appropriate substitutions for their variables.

Unification

A substitution is a finite set of pairs of variables and terms,
called replacements.

{x←a, y←f(b), v←w}

The result of applying a substitution σ to an expression ϕ is
the expression ϕσ obtained from ϕ by replacing every
occurrence of every variable in the substitution by its
replacement.

p(x,x,y,z){x←a, y←f(b), v←w} = p(a,a,f(b),z)

Substitutions

r{x,y,z}{x←a, y←f(u), z←v}=r{a,f(u),v}

r{a,f(u),v}{u←d, v←e, z←g}=r(a,f(d),e)

r{x,y,z}{x←a, y←f(d), z←e, u←d, v←e}=r(a,f(d),e)

Cascaded Substitutions

Composition of Substitutions

The composition of substitution σ and τ is the substitution
(written compose(σ,τ) or, more simply, στ) obtained by
(1) applying τ to the replacements in σ
(2) adding to σ pairs from τ with different variables
(3) deleting any assignments of a variable to itself.

{x←a, y←f(u), z←v}{u←d,v←e,z←g}

={x←a,y←f(d),z←e}{u←d,v←e,z←g}

={x←a,y←f(d),z←e,u←d,v←e}

Composition of Substitutions

Unification

A substitution σ is a unifier for an expression ϕ and an
expression ψ if and only if ϕσ=ψσ.

p(x,y){x←a,y←b,v←b}=p(a,b)
p(a,v){x←a,y←b,v←b}=p(a,b)

If two expressions have a unifier, they are said to be
unifiable. Otherwise, they are nonunifiable.

p(x,x)
p(a,b)

Unification

Non-Uniqueness of Unification

Unifier 1:
p(x,y){x←a,y←b,v←b} = p(a,b)
p(a,v){x←a,y←b,v←b} = p(a,b)

Unifier 2:
p(x,y){x←a,y← f(w),v← f(w)} = p(a,f(w))
p(a,v){x←a,y← f(w), v← f(w)} = p(a,f(w))

Unifier 3:
p(x,y){x←a,y←v} = p(a,v)
p(a,v){x←a,y←v} = p(a,v)

NonUniqueness of Unification

Most General Unifier

A substitution σ is a most general unifier (mgu) of two
expressions if and only if it is as general as or more general
than any other unifier.

Theorem: If two expressions are unifiable, then they have an
mgu that is unique up to variable permutation.

p(x,y){x←a,y←v} = p(a,v)
p(a,v){x←a,y←v} = p(a,v)

p(x,y){x←a,v←y} = p(a,y)
p(a,v){x←a,v←y} = p(a,y)

Most General Unifier

Unification Procedure

One good thing about our language is that there is a simple
and inexpensive procedure for computing a most general
unifier of any two expressions if it exists.

Unification Procedure

Each expression is treated as a sequence of its immediate
subexpressions.

Linear Version:
p(a, f(b, c), d)

Structured Version:

p a d

f b c

Expression Structure

(1) If two expressions being compared are identical, succeed.

(2) If neither is a variable and at least one is a constant, fail.

(3) If at least one of the expressions is a variable, proceed as
described shortly.

(4) If both expressions are sequences, iterate across the
expressions, comparing as described above.

Unification Procedure

If one of the expressions is a variable, check whether the
variable has a binding in the current substitution.

(a) If so, try to unify the binding with the other expression.

(b) If no binding, check whether the other expression contains
the variable. If the variable occurs within the expression, fail;
otherwise, set the substitution to the composition of the old
substitution and a new substitution in which variable is bound
to the other expression.

Dealing With Variables

Example

Call: p(x,b), p(a,y), {}

 Call: p, p, {}
 Exit: {}

 Call: x, a, {}
 Exit: {}{x←a} = {x←a}

 Call: b, y, {x←a}
 Exit: {x←a}{y←b} = {x←a, y←b}

Exit: {x←a, y←b}

Example

Example

Call: p(x,x), p(a,y), {}

 Call: p, p, {}
 Exit: {}

 Call: x, a, {}
 Exit: {}{x←a} = {x←a}

 Call: x, y, {x←a}
 Call: a, y, {x←a}
 Exit: {x←a}{y←a} = {x←a, y←a}
 Exit: {x←a, y←a}

Exit: {x←a, y←a}

Example

Example

Call: p(x,x), p(a,b), {}

 Call: p, p, {}
 Exit: {}

 Call: x, a, {}
 Exit: {}{x←a} = {x←a}

 Call: x, b, {x←a}
 Call: a, b, {x←a}
 Exit: false
 Exit: false

Exit: false

Example

Example

Call: p(x,x), p(y,f(y)), {}

 Call: p, p, {}
 Exit: {}

 Call: x, y, {}
 Exit: {}{x←y} = {x←y}

 Call: x, f(y), {x←y}
 Call: y, f(y), {x←y}
 Exit: false
 Exit: false

Exit: false

Example

Reason

Circularity Problem:
 {x←f(y),y←f(y)}

Unification Problem:

 p(x,x){x←f(y), y←f(y)} = p(f(y),f(y))

 p(y,f(y)){x←f(y), y←f(y)} = p(f(y),f(f(y)))

Reason

Solution

Before assigning a variable to an expression, first check that
the variable does not occur within that expression.

This is called, oddly enough, the occur check test.

Prolog does not do the occur check (and is proud of it).

Solution

Resolution Principle

Propositional Resolution

€

{ϕ1,...,ϕ,...,ϕm}
{ψ1,...,¬ϕ,...,ψn}
{ϕ1,...,ϕm ,ψ1,...,ψn}

Propositional Resolution

Resolution (Simple Version)

€

{ϕ1,..., ϕ,...,ϕm}
{ψ1,...,¬ψ,...,ψn}
{ϕ1,...,ϕm ,ψ1,...,ψn}σ
where σ = mgu(ϕ,ψ)

Resolution (simple version)

Example

€

{ p(a, y),r(y)}
{¬p(x,b), s(x)}
{r(y), s(x)}{x← a, y← b}
{r(b), s(a)}

Example

Problem

€

{ p(a, x)}
{¬p(x,b)}
Failure

Problem

Resolution (Improved)

€

{ϕ1,..., ϕ,...,ϕm}
{ψ1,...,¬ψ,...,ψn}
{ϕ1τ ,...,ϕmτ ,ψ1,...,ψn}σ
where σ = mgu(ϕτ ,ψ)
where τ is a variable renaming on ϕ

Resolution (improved)

Example

€

{ p(a, x)}
{¬p(x,b)}
Failure

€

{ p(a,y)}
{¬p(x,b)}
{}{x← a,y← b}

Example

Problem

€

{p(x), p(y)}
{¬p(u),¬p(v)}
{p(y),¬p(v)}
{p(x),¬p(v)}
{p(y),¬p(u)}
{p(x),¬p(u)}

Problem

If a subset of the literals in a clause Φ has a most general
unifier γ, then the clause Φ' obtained by applying γ to Φ is
called a factor of Φ.

Clause

{p(x),p(f(y)),r(x,y)}

Factors

{p(f(y)),r(f(y),y)}

{p(x),p(f(y)),r(x,y)}

Factors

Resolution (Final Version)

€

Φ

Ψ

((Φ'−{φ})τ ∪ (Ψ'−{¬ψ}))σ
where φ ∈ Φ' , a factor of Φ
where ¬ψ ∈ Ψ' , a factor of Ψ
where σ = mgu(ϕτ ,ψ)
where τ is a variable renaming on ϕ

Resolution (final version)

Example

€

{p(x), p(y)}
{¬p(u),¬p(v)}
{p(y),¬p(v)}
{p(x),¬p(v)}
{p(y),¬p(u)}
{p(x),¬p(u)} €

{p(x)}
{¬p(u)}
{}

Example

Need for Original Clauses

1. {p(a,y), p(x,b)} Premise
2. {¬p(a,d)} Premise
3. {¬p(c,b)} Premise
4. {p(x,b)} 1, 2
5. {} 3, 4

1. {p(a,y), p(x,b)} Premise
2. {¬p(a,d)} Premise
3. {¬p(c,b)} Premise
4. {p(a,b)} Factor of 1

Need for Original Clauses

Resolution Reasoning

Resolution Derivation

A resolution derivation of a conclusion from a set of
premises is a finite sequence of clauses terminating in the
conclusion in which each clause is either a premise or the
result of applying the resolution principle to earlier elements
of the sequence.

Resolution Derivation

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z) , g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example

Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example

Resolution Not Generatively Complete

Using the Resolution Principle alone, it is not possible to
generate every clause that is logically entailed by a set of
premises.

Examples:

{} |= {p(a), ¬p(a)}

But resolution cannot generate these results.

Resolution Not Generatively Complete

Unsatisfiability

Start with premises.

Apply resolution repeatedly.

If empty clause generated, the original set is unsatisfiable.

Demonstrating Unsatisfiability

Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

Example

Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

6. {r(a)} 5, 3

Example

Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

6. {r(a)} 5, 3

7. {} 6, 4

Example

Logical Entailment

A resolution derivation of a clause ϕ from a set Δ of clauses
is a sequence of clauses ending in ϕ in which each item is
(1) a member of Δ or
(2) the result of applying the resolution to earlier items.

A sentence ϕ is provable from a set of sentences Δ by
resolution if and only if there is a derivation of the empty
clause from the clausal form of Δ∪{¬ϕ}.

A resolution proof is a derivation of the empty clause from
the clausal form of the premises and the negation of the
desired conclusion.

Provability

Example

Everybody loves somebody. Everybody loves a lover.
Show that everybody loves everybody.

€

∀x.∃y.loves(x,y)
∀u.∀v.∀w.(loves(v,w)⇒ loves(u,v))
¬∀x.∀y.loves(x,y)

€

{loves(x, f (x))}
{¬loves(v,w), loves(u, v)}
{¬loves(jack, jill)

Example

Example

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

Example

Example (continued)

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

4. {loves(u,x)} 1, 2

Example (continued)

Example (concluded)

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

4. {loves(u,x)} 1, 2

5. {} 4, 3

Example (concluded)

Inferential Equivalence

Equivalence Theorem: It is possible to prove a conclusion
from a set of premises using Resolution if and only if it is
possible to prove that conclusion from those premises using
Fitch (without domain closure or induction).

Inferential Equivalence

