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Assumption
  p(a)
  p(f(a))
  p(x) => q(x)
  ~p(x) => q(x)

Universal Elimination 
    ∀x.∀y.q(x,y)

q(a,a)       q(a,[c])
q(a,b)       q(a,[c])
q(a, f(a))       q(a, f([c]))
    …           …

Problem With Natural Deduction



The Resolution Principle is a rule of inference.  Using the 
Resolution Principle alone, it is possible to build a proof 
system (called Resolution) that can prove everything that 
can be proved in Fitch (without domain closure or 
induction).

There is no need to make arbitrary assumptions or 
replacements.

The search space using the Resolution Principle is better 
controlled than that of natural deduction systems.

Relies on functional notation.

Resolution Principle



Clausal Form

Unification

Resolution Rule of Inference

Unsatisfiability

Logical Entailment

Answer Extraction

Programme



Clausal Form



Resolution works only on expressions in clausal form.

Fortunately, it is possible to convert any set of sentences 
into an equally satisfiable set of expressions in clausal 
form.

Clausal Form



A literal is either an atomic sentence or a negation of an 
atomic sentence.

p(a), ¬p(y) 

A clausal sentence is either a literal or a disjunction of 
literals.

p(a), ¬p(y),  p(a) ∨ ¬p(y) 

A clause is a set of literals.

{p(a)}, {¬p(y)}, {p(a),¬p(y)}

Clausal Form



The empty clause {} is unsatisfiable.

Why? It is equivalent to an empty disjunction.

Empty Sets



Inseado

€ 

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2 )∧ (ϕ1∨¬ϕ2 )

Implications Out:

Inseado



€ 

ϕ1⇒ϕ2 → ¬ϕ1∨ϕ2
ϕ1⇔ϕ2 → (¬ϕ1∨ϕ2 )∧ (ϕ1∨¬ϕ2 )

¬¬ϕ → ϕ

¬(ϕ1 ∧ϕ2 ) → ¬ϕ1 ∨¬ϕ2
¬(ϕ1 ∨ϕ2 ) → ¬ϕ1 ∧¬ϕ2
¬∀ν.ϕ → ∃ν.¬ϕ
¬∃ν.ϕ → ∀ν.¬ϕ

Implications Out:

Negations In:

Inseado



∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Inseado



∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Existentials Out (Outside in)

∃x.p(x) → p(a)

Inseado



∀x.p(x)∨∀x.q(x) → ∀x.p(x)∨∀y.q(y)

Standardize variables

Existentials Out (Outside in)

∃x.p(x) → p(a)

∀x.( p(x)∧ ∃z.q(x, y, z)) → ∀x.( p(x)∧ q(x, y, f (x, y)))

Inseado



Alls Out

∀x.( p(x)∧ q(x, y, f (x, y))) → p(x)∧ q(x, y, f (x, y))

Inseado



Alls Out

Distribution

∀x.( p(x)∧ q(x, y, f (x, y))) → p(x)∧ q(x, y, f (x, y))

€ 

ϕ1∨ (ϕ2 ∧ϕ3 ) → (ϕ1∨ϕ2 )∧ (ϕ1∨ϕn )
(ϕ1∧ϕ2 )∨ϕ3 → (ϕ1∨ϕ3 )∧ (ϕ2 ∨ϕ3 )
ϕ ∨ (ϕ1∨ ...∨ϕn ) → (ϕ ∨ϕ1∨ ...∨ϕn )
(ϕ1∨ ...∨ϕn )∨ϕ → (ϕ1∨ ...∨ϕn ∨ϕ )
ϕ ∧ (ϕ1∧ ...∧ϕn ) → (ϕ ∧ϕ1∧ ...∧ϕn )
(ϕ1∧ ...∧ϕn )∧ϕ → (ϕ1∧ ...∧ϕn ∧ϕ )

Inseado



Operators Out
ϕ1 ∧ ... ∧ϕn → ϕ1

...
ϕn

ϕ1 ∨ ... ∨ϕn → {ϕ1,..., ϕn}

Inseado



Example

∃y.(g(y)∧∀z.(r(z)⇒ f (y,z)))
I ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
N ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
S ∃y.(g(y)∧∀z.(¬r(z)∨ f (y, z)))
E g(greg)∧∀z.(¬r(z)∨ f (greg, z)))
A g(greg)∧ (¬r(z)∨ f (greg, z)))
D g(greg)∧ (¬r(z)∨ f (greg, z)))
O {g(greg)}

{¬r(z), f (greg, z)}

Example



¬∃y.(g(y)∧∀z.(r(z)⇒ f (y, z)))
I ¬∃y.(g(y)∧∀z.(¬r(z)∨ f (y,z)))
N ¬∃y.(g(y)∧∀z.(¬r(z)∨ f (y,z)))

∀y.¬(g(y)∧∀z.(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨¬∀z.(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨∃z.¬(¬r(z)∨ f (y, z)))
∀y.(¬g(y)∨∃z.(¬¬r(z)∧¬f (y,z)))
∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))

S ∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))

Example



€ 

∀y.(¬g(y)∨∃z.(r(z)∧¬f (y, z)))
E ∀y.(¬g(y)∨ (r(h(y))∧¬f (y,h(y))))
A ¬g(y)∨ (r(h(y))∧¬f (y,h(y)))
D (¬g(y)∨ r(h(y)))∧ (¬g(y)∨¬f (y,h(y)))
O {¬g(y), r(h(y))}

{¬g(y),¬f (y,h(y))}

Example



Bad News: The result of converting a set of sentences is 
not necessarily logically equivalent to the original set of 
sentences.  Why?  Introduction of new constants and 
functions.

Good News: The result of converting a set of sentences is 
satisfiable in the expanded language if and only if the 
original set of sentences is satisfiable in the original 
language.  Important because we use satisfiability to 
determine logical entailment.

Potential problem with domain closure and induction 
eliminated by keeping new constants separate form old.

Clausal Form



Unification



Unification

Unification is the process of determining whether two 
expressions can be unified, i.e. made identical by 
appropriate substitutions for their variables.

Unification



A substitution is a finite set of pairs of variables and terms, 
called replacements.

{x←a, y←f(b), v←w}

The result of applying a substitution σ to an expression ϕ is 
the expression ϕσ obtained from ϕ by replacing every 
occurrence of every variable in the substitution by its 
replacement. 

p(x,x,y,z){x←a, y←f(b), v←w} = p(a,a,f(b),z)

Substitutions



r{x,y,z}{x←a, y←f(u), z←v}=r{a,f(u),v}

r{a,f(u),v}{u←d, v←e, z←g}=r(a,f(d),e)

r{x,y,z}{x←a, y←f(d), z←e, u←d, v←e}=r(a,f(d),e)

Cascaded Substitutions



Composition of Substitutions

The composition of substitution σ and τ is the substitution 
(written compose(σ,τ) or, more simply, στ) obtained by
(1) applying τ to the replacements in σ
(2) adding to σ pairs from τ with different variables
(3) deleting any assignments of a variable to itself.

{x←a, y←f(u), z←v}{u←d,v←e,z←g}

={x←a,y←f(d),z←e}{u←d,v←e,z←g}

={x←a,y←f(d),z←e,u←d,v←e}

Composition of Substitutions



Unification

A substitution σ is a unifier for an expression ϕ and an 
expression ψ if and only if ϕσ=ψσ.

p(x,y){x←a,y←b,v←b}=p(a,b)
p(a,v){x←a,y←b,v←b}=p(a,b)

If two expressions have a unifier, they are said to be 
unifiable.  Otherwise, they are nonunifiable.

p(x,x)
p(a,b)

Unification



Non-Uniqueness of Unification

Unifier 1:
p(x,y){x←a,y←b,v←b} = p(a,b)
p(a,v){x←a,y←b,v←b} = p(a,b)

Unifier 2:
p(x,y){x←a,y← f(w),v← f(w)} = p(a,f(w))
p(a,v){x←a,y← f(w), v← f(w)} = p(a,f(w))

Unifier 3:
p(x,y){x←a,y←v} = p(a,v)
p(a,v){x←a,y←v} = p(a,v)

NonUniqueness of Unification



Most General Unifier

A substitution σ is a most general unifier (mgu) of two 
expressions if and only if it is as general as or more general 
than any other unifier.

Theorem: If two expressions are unifiable, then they have an 
mgu that is unique up to variable permutation.

p(x,y){x←a,y←v} = p(a,v)
p(a,v){x←a,y←v} = p(a,v)

p(x,y){x←a,v←y} = p(a,y)
p(a,v){x←a,v←y} = p(a,y)

Most General Unifier



Unification Procedure

One good thing about our language is that there is a simple 
and inexpensive procedure for computing a most general 
unifier of any two expressions if it exists.

Unification Procedure



Each expression is treated as a sequence of its immediate 
subexpressions.

Linear Version:
p(a, f(b, c), d)

Structured Version:
                              

p a d

f b c

Expression Structure



(1) If two expressions being compared are identical, succeed.

(2) If neither is a variable and at least one is a constant, fail.

(3) If at least one of the expressions is a variable,  proceed as 
described shortly.

(4) If both expressions are sequences, iterate across the 
expressions, comparing as described above.

Unification Procedure



If one of the expressions is a variable, check whether the 
variable has a binding in the current substitution. 

(a) If so, try to unify the binding with the other expression.

(b) If no binding, check whether the other expression contains 
the variable.  If the variable occurs within the expression, fail; 
otherwise, set the substitution to the composition of the old 
substitution and a new substitution in which variable is bound 
to the other expression.

Dealing With Variables



Example

Call: p(x,b), p(a,y), {} 

    Call: p, p, {} 
    Exit: {}

    Call: x, a, {}
    Exit: {}{x←a} = {x←a}

    Call: b, y, {x←a}
    Exit: {x←a}{y←b} = {x←a, y←b}

Exit: {x←a, y←b}

Example



Example

Call: p(x,x), p(a,y), {}

    Call: p, p, {}
    Exit: {}

    Call:  x, a, {}
    Exit: {}{x←a} = {x←a} 

    Call: x, y, {x←a}
        Call: a, y, {x←a}
        Exit: {x←a}{y←a} = {x←a, y←a}
    Exit: {x←a, y←a}

Exit: {x←a, y←a}

Example



Example

Call: p(x,x), p(a,b), {}

    Call: p, p, {}
    Exit: {}

    Call:  x, a, {}
    Exit: {}{x←a} = {x←a} 

    Call: x, b, {x←a}
        Call: a, b, {x←a}
        Exit: false
    Exit: false

Exit: false

Example



Example

Call: p(x,x), p(y,f(y)), {}

    Call: p, p, {}
    Exit: {}

    Call:  x, y, {}
    Exit: {}{x←y} = {x←y} 

    Call: x, f(y), {x←y}
        Call: y, f(y), {x←y}
        Exit: false
    Exit: false

Exit: false

Example



Reason

Circularity Problem:
  {x←f(y),y←f(y)}

Unification Problem:

   p(x,x){x←f(y), y←f(y)}     = p(f(y),f(y))

   p(y,f(y)){x←f(y), y←f(y)} = p(f(y),f(f(y)))

Reason



Solution

Before assigning a variable to an expression, first check that 
the variable does not occur within that expression.

This is called, oddly enough, the occur check test.

Prolog does not do the occur check (and is proud of it).

Solution



Resolution Principle



Propositional Resolution

€ 

{ϕ1,...,ϕ,...,ϕm}
{ψ1,...,¬ϕ,...,ψn}
{ϕ1,...,ϕm ,ψ1,...,ψn}

Propositional Resolution



Resolution (Simple Version)

€ 

{ϕ1,..., ϕ,...,ϕm}
{ψ1,...,¬ψ,...,ψn}
{ϕ1,...,ϕm ,ψ1,...,ψn}σ
where σ = mgu(ϕ,ψ)

Resolution (simple version)



Example

€ 

{ p(a, y),r(y)}
{¬p(x,b), s(x)}
{r(y), s(x)}{x← a, y← b}
{r(b), s(a)}

Example



Problem

€ 

{ p(a, x)}
{¬p(x,b)}
Failure

Problem



Resolution (Improved)

€ 

{ϕ1,..., ϕ,...,ϕm}
{ψ1,...,¬ψ,...,ψn}
{ϕ1τ ,...,ϕmτ ,ψ1,...,ψn}σ
where σ = mgu(ϕτ ,ψ)
where τ is a variable renaming on ϕ

Resolution (improved)



Example

€ 

{ p(a, x)}
{¬p(x,b)}
Failure

€ 

{ p(a,y)}
{¬p(x,b)}
{}{x← a,y← b}

Example



Problem

€ 

{p(x), p(y)}
{¬p(u),¬p(v)}
{p(y),¬p(v)}
{p(x),¬p(v)}
{p(y),¬p(u)}
{p(x),¬p(u)}

Problem



If a subset of the literals in a clause Φ has a most general 
unifier γ, then the clause Φ' obtained by applying γ to Φ is 
called a factor of Φ.

Clause

{p(x),p(f(y)),r(x,y)}

Factors

{p(f(y)),r(f(y),y)}

{p(x),p(f(y)),r(x,y)}

Factors



Resolution (Final Version)

€ 

Φ

Ψ

((Φ'−{φ})τ ∪ (Ψ'−{¬ψ}))σ
where φ ∈ Φ' ,  a factor of Φ 
where ¬ψ ∈ Ψ' ,  a factor of Ψ 
where σ = mgu(ϕτ ,ψ)
where τ is a variable renaming on ϕ

Resolution (final version)



Example

€ 

{p(x), p(y)}
{¬p(u),¬p(v)}
{p(y),¬p(v)}
{p(x),¬p(v)}
{p(y),¬p(u)}
{p(x),¬p(u)} € 

{p(x)}
{¬p(u)}
{}

Example



Need for Original Clauses

1. {p(a,y), p(x,b)} Premise
2. {¬p(a,d)} Premise
3. {¬p(c,b)} Premise
4. {p(x,b)} 1, 2
5. {} 3, 4

1. {p(a,y), p(x,b)} Premise
2. {¬p(a,d)} Premise
3. {¬p(c,b)} Premise
4. {p(a,b)} Factor of 1

Need for Original Clauses



Resolution Reasoning



Resolution Derivation

A resolution derivation of a conclusion from a set of 
premises is a finite sequence of clauses terminating in the 
conclusion in which each clause is either a premise or the 
result of applying the resolution principle to earlier elements 
of the sequence.

Resolution Derivation



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z) , g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example



Example

1. {p(art,bob)} Premise

2. {p(art,bud)} Premise

3. {p(bob,cal)} Premise

4. {p(bud,coe)} Premise

5. {¬p(x,y), ¬p(y,z), g(x,z)} Premise

6. {¬p(bob,z), g(art,z)} 1, 5

7. {g(art,cal)} 3, 6

8. {¬p(bud,z), g(art,z)} 2, 5

9. {g(art,coe)} 4, 8

Example



Resolution Not Generatively Complete

Using the Resolution Principle alone, it is not possible to 
generate every clause that is logically entailed by a set of 
premises.

Examples:

{} |= {p(a), ¬p(a)}

But resolution cannot generate these results.

Resolution Not Generatively Complete



Unsatisfiability



Start with premises.

Apply resolution repeatedly.

If empty clause generated, the original set is unsatisfiable.

Demonstrating Unsatisfiability



Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

Example



1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

Example



Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

6. {r(a)} 5, 3

Example



Example

1. {p(a,b), q(a,c)} Premise

2. {¬p(x,y), r(x)} Premise

3. {¬q(x,y), r(x)} Premise

4. {¬r(z)} Premise

5. {q(a,c), r(a)} 1, 2

6. {r(a)} 5, 3

7. {} 6, 4

Example



Logical Entailment



A resolution derivation of a clause ϕ from a set Δ of clauses 
is a sequence of clauses ending in ϕ in which each item is
(1) a member of Δ or
(2) the result of applying the resolution to earlier items.

A sentence ϕ is provable from a set of sentences Δ by
resolution if and only if there is a derivation of the empty 
clause from the clausal form of Δ∪{¬ϕ}.

A resolution proof is a derivation of the empty clause from 
the clausal form of the premises and the negation of the 
desired conclusion.

Provability



Example

Everybody loves somebody.  Everybody loves a lover. 
Show that everybody loves everybody.

€ 

∀x.∃y.loves(x,y)
∀u.∀v.∀w.(loves(v,w)⇒ loves(u,v))
¬∀x.∀y.loves(x,y)

€ 

{loves(x, f (x))}
{¬loves(v,w), loves(u, v)}
{¬loves( jack, jill)

Example



Example

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

Example



Example (continued)

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

4. {loves(u,x)} 1, 2

Example (continued)



Example (concluded)

1. {loves(x,f(x))} Premise
2. {¬loves(v,w), loves(u,v)} Premise

3. {¬loves(jack,jill)} Negated Goal

4. {loves(u,x)} 1, 2

5. {} 4, 3

Example (concluded)



Inferential Equivalence

Equivalence Theorem: It is possible to prove a conclusion 
from a set of premises using Resolution if and only if it is 
possible to prove that conclusion from those premises using 
Fitch (without domain closure or induction).

Inferential Equivalence




