Herbrand Resolution
Problem With Natural Deduction

Assumption

\[p(a) \]
\[p(f(a)) \]
\[p(x) \Rightarrow q(x) \]
\[\sim p(x) \Rightarrow q(x) \]

Universal Elimination

\[\forall x. \forall y. q(x, y) \]
\[q(a, a) \quad q(x, a) \]
\[q(a, y) \quad q(x, y) \]
\[q(a, f(a)) \quad q(x, f(a)) \]
\[\ldots \quad \ldots \]
Resolution Principle

The *Resolution Principle* is a rule of inference.

Using the Resolution Principle alone (without axiom schemata or other rules of inference), it is possible to build a proof system (called *Resolution*) that is can prove everything that can be proved in Fitch.

The search space using the Resolution Principle is much smaller than that of natural deduction systems.
Programme

Clausal Form

Unification

Resolution Rule of Inference

Unsatisfiability

Logical Entailment

Answer Extraction
Clausal Form
Clausal Form

Resolution works only on expressions in *clausal form*.

Fortunately, it is possible to convert any set of Herbrand Logic sentences into an equally satisfiable set of sentences in clausal form.
Clausal Form

A literal is either an atomic sentence or a negation of an atomic sentence.

\[p(a), \neg p(b) \]

A clausal sentence is either a literal or a disjunction of literals.

\[p(a), \neg p(b), p(a) \lor \neg p(b) \]

A clause is a set of literals.

\[\{p(a)\}, \{-p(b)\}, \{p(a), \neg p(b)\} \]
Empty Sets

The empty clause \{\} is unsatisfiable.

Why? It is equivalent to an empty disjunction.
Inseado

Implications Out:

\[\varphi_1 \Rightarrow \varphi_2 \quad \Rightarrow \quad \neg \varphi_1 \lor \varphi_2 \]

\[\varphi_1 \Leftrightarrow \varphi_2 \quad \Rightarrow \quad (\neg \varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \neg \varphi_2) \]
Implications Out:

\[\varphi_1 \implies \varphi_2 \implies \neg \varphi_1 \lor \varphi_2 \]

\[\varphi_1 \iff \varphi_2 \implies (\neg \varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \neg \varphi_2) \]

Negations In:

\[\neg \neg \varphi \implies \varphi \]

\[\neg (\varphi_1 \land \varphi_2) \implies \neg \varphi_1 \lor \neg \varphi_2 \]

\[\neg (\varphi_1 \lor \varphi_2) \implies \neg \varphi_1 \land \neg \varphi_2 \]

\[\neg \forall \nu. \varphi \implies \exists \nu. \neg \varphi \]

\[\neg \exists \nu. \varphi \implies \forall \nu. \neg \varphi \]
Standardize variables

∀x.p(x) ∨ ∀x.q(x) \rightarrow ∀x.p(x) ∨ ∀y.q(y)
Standardize variables

$$\forall x. p(x) \lor \forall x. q(x) \rightarrow \forall x. p(x) \lor \forall y. q(y)$$

Existentials Out (Outside in)

$$\exists x. p(x) \rightarrow p(a)$$
Inseado (continued)

Standardize variables

\[\forall x. p(x) \lor \forall x. q(x) \rightarrow \forall x. p(x) \lor \forall y. q(y) \]

Existentials Out (Outside in)

\[\exists x. p(x) \rightarrow p(a) \]

\[\forall x. (p(x) \land \exists z. q(x, y, z)) \rightarrow \forall x. (p(x) \land q(x, y, f(x, y))) \]
Inseado (continued)

Alls Out

\[\forall x. (p(x) \land q(x, y, f(x, y))) \rightarrow p(x) \land q(x, y, f(x, y)) \]
Inseado (continued)

Alls Out

\[\forall x. (p(x) \land q(x, y, f(x, y))) \rightarrow p(x) \land q(x, y, f(x, y)) \]

Distribution

\[\varphi_1 \lor (\varphi_2 \land \varphi_3) \rightarrow (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_n) \]

\[(\varphi_1 \land \varphi_2) \lor \varphi_3 \rightarrow (\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3) \]

\[\varphi \lor (\varphi_1 \lor \ldots \lor \varphi_n) \rightarrow (\varphi \lor \varphi_1 \lor \ldots \lor \varphi_n) \]

\[(\varphi_1 \lor \ldots \lor \varphi_n) \lor \varphi \rightarrow (\varphi_1 \lor \ldots \lor \varphi_n \lor \varphi) \]

\[\varphi \land (\varphi_1 \land \ldots \land \varphi_n) \rightarrow (\varphi \land \varphi_1 \land \ldots \land \varphi_n) \]

\[(\varphi_1 \land \ldots \land \varphi_n) \land \varphi \rightarrow (\varphi_1 \land \ldots \land \varphi_n \land \varphi) \]
Inseado (concluded)

Operators Out

\[\varphi_1 \land \ldots \land \varphi_n \rightarrow \varphi_1 \]

\[\ldots \]

\[\varphi_n \]

\[\varphi_1 \lor \ldots \lor \varphi_n \rightarrow \{\varphi_1, \ldots, \varphi_n\} \]
Example

∀y.(g(y) ∧ ∀z.(r(z) ⇒ f(y,z)))

I. ∃y.(g(y) ∧ ∀z.(¬r(z) ∨ f(y,z)))
N. ∃y.(g(y) ∧ ∀z.(¬r(z) ∨ f(y,z)))
S. ∃y.(g(y) ∧ ∀z.(¬r(z) ∨ f(y,z)))
E. g(greg) ∧ ∀z.(¬r(z) ∨ f(greg,z))
A. g(greg) ∧ (¬r(z) ∨ f(greg,z))
D. g(greg) ∧ (¬r(z) ∨ f(greg,z))
O. {g(greg)}
 {¬r(z), f(greg,z)}
Example

\[\neg \exists y. (g(y) \land \forall z. (r(z) \Rightarrow f(y,z))) \]

I \hspace{1cm} \neg \exists y. (g(y) \land \forall z. (\neg r(z) \lor f(y,z)))

N \neg \exists y. (g(y) \land \forall z. (\neg r(z) \lor f(y,z)))

\forall y. (\neg g(y) \land \forall z. (\neg r(z) \lor f(y,z)))

\forall y. (\neg g(y) \lor \neg \forall z. (\neg r(z) \lor f(y,z)))

\forall y. (\neg g(y) \lor \exists z. (\neg (\neg r(z) \lor f(y,z))))

\forall y. (\neg g(y) \lor \exists z. (\neg (\neg r(z) \land \neg f(y,z))))

\forall y. (\neg g(y) \lor \exists z. (r(z) \land \neg f(y,z)))

S \forall y. (\neg g(y) \lor \exists z. (r(z) \land \neg f(y,z)))
Example (concluded)

\[\forall y. (\neg g(y) \lor \exists z. (r(z) \land \neg f(y, z)))\]

E \[\forall y. (\neg g(y) \lor (r(h(y)) \land \neg f(y, h(y))))\]

A \[\neg g(y) \lor (r(h(y)) \land \neg f(y, h(y)))\]

D \[(\neg g(y) \lor r(h(y))) \land (\neg g(y) \lor \neg f(y, h(y)))\]

O \[
\{\neg g(y), r(h(y))\}
\]

\[
\{\neg g(y), \neg f(y, h(y))\}
\]
Clausal Form

Bad News: The result of converting a set of sentences is not necessarily logically equivalent to the original set of sentences. Why? Introduction of Skolem constants and functions.

Good News: The result of converting a set of sentences is satisfiable in the expanded language if and only if the original set of sentences is satisfiable in the original language. Important because we use satisfiability to determine logical entailment.
Unification
Unification

Unification is the process of determining whether two expressions can be *unified*, i.e. made identical by appropriate substitutions for their variables.
Substitutions

A substitution is a finite set of pairs of variables and terms, called replacements.

\{x \leftarrow a, \ y \leftarrow f(b), \ v \leftarrow w\}

The result of applying a substitution \(\sigma\) to an expression \(\varphi\) is the expression \(\varphi\sigma\) obtained from \(\varphi\) by replacing every occurrence of every variable in the substitution by its replacement.

\[p(x,x,y,z)\{x \leftarrow a, \ y \leftarrow f(b), \ v \leftarrow w\} = p(a,a,f(b),z)\]
Cascaded Substitutions

\[
\begin{align*}
 r\{x,y,z\}\{x \leftarrow a, y \leftarrow f(u), z \leftarrow v\} &= r\{a,f(u),v\} \\
 r\{a,f(u),v\}\{u \leftarrow d, v \leftarrow e, z \leftarrow g\} &= r(a,f(d),e) \\
 r\{x,y,z\}\{x \leftarrow a, y \leftarrow f(d), z \leftarrow e, u \leftarrow d, v \leftarrow e\} &= r(a,f(d),e)
\end{align*}
\]
Composition of Substitutions

The *composition* of substitution σ and τ is the substitution (written $\text{compose}(\sigma,\tau)$ or, more simply, $\sigma\tau$) obtained by

1. applying τ to the replacements in σ
2. adding to σ pairs from τ with different variables
3. deleting any assignments of a variable to itself.

\[
\{x\leftarrow a, \ y\leftarrow f(u), \ z\leftarrow v\}\{u\leftarrow d, \ v\leftarrow e, \ z\leftarrow g\}
\]

\[
=\{x\leftarrow a, y\leftarrow f(d), \ z\leftarrow e\}\{u\leftarrow d, v\leftarrow e, \ z\leftarrow g\}
\]

\[
=\{x\leftarrow a, y\leftarrow f(d), \ z\leftarrow e, \ u\leftarrow d, v\leftarrow e\}
\]
Unification

A substitution σ is a *unifier* for an expression φ and an expression ψ if and only if $\varphi \sigma = \psi \sigma$.

$$p(x,y)\{x \leftarrow a, y \leftarrow b, v \leftarrow b\} = p(a,b)$$
$$p(a,v)\{x \leftarrow a, y \leftarrow b, v \leftarrow b\} = p(a,b)$$

If two expressions have a unifier, they are said to be *unifiable*. Otherwise, they are *nonunifiable*.

$$p(x,x)$$
$$p(a,b)$$
Non-Uniqueness of Unification

Unifier 1:

\[
p(x,y)\{x\leftarrow a, y\leftarrow b, v\leftarrow b\} = p(a,b)
\]
\[
p(a,v)\{x\leftarrow a, y\leftarrow b, v\leftarrow b\} = p(a,b)
\]

Unifier 2:

\[
p(x,y)\{x\leftarrow a, y\leftarrow f(w), v\leftarrow f(w)\} = p(a,f(w))
\]
\[
p(a,v)\{x\leftarrow a, y\leftarrow f(w), v\leftarrow f(w)\} = p(a,f(w))
\]

Unifier 3:

\[
p(x,y)\{x\leftarrow a, y\leftarrow v\} = p(a,v)
\]
\[
p(a,v)\{x\leftarrow a, y\leftarrow v\} = p(a,v)
\]
Most General Unifier

A substitution σ is a most general unifier (mgu) of two expressions if and only if it is as general as or more general than any other unifier.

Theorem: If two expressions are unifiable, then they have an mgu that is unique up to variable permutation.

\[
\begin{align*}
p(x,y)\{x\leftarrow a, y\leftarrow v\} &= p(a,v) \\
p(a,v)\{x\leftarrow a, y\leftarrow v\} &= p(a,v) \\
p(x,y)\{x\leftarrow a, v\leftarrow y\} &= p(a,y) \\
p(a,v)\{x\leftarrow a, v\leftarrow y\} &= p(a,y)
\end{align*}
\]
Unification Procedure

One good thing about our language is that there is a simple and inexpensive procedure for computing a most general unifier of any two expressions if it exists.
Expression Structure

Each expression is treated as a sequence of its immediate subexpressions.

Linear Version:

$$p(a, f(b, c), d)$$

Structured Version:
Unification Procedure

(1) If two expressions being compared are identical, succeed.

(2) If neither is a variable and at least one is a constant, fail.

(3) If one of the expressions is a variable, proceed as described shortly.

(4) If both expressions are sequences, iterate across the expressions, comparing as described above.
Dealing with Variables

If one of the expressions is a variable, check whether the variable has a binding in the current substitution.

(a) If so, try to unify the binding with the other expression.

(b) If no binding, check whether the other expression contains the variable. If the variable occurs within the expression, fail; otherwise, set the substitution to the composition of the old substitution and a new substitution in which variable is bound to the other expression.
Example

Call: $p(x, b), p(a, y), \{\}$

Call: $p, p, \{\}$
Exit: $\{\}$

Call: $x, a, \{\}$
Exit: $\{\}$\{x←a\} = \{x←a\}$

Call: $b, y, \{x←a\}$
Exit: $\{x←a\}\{y←b\} = \{x←a, y←b\}$

Exit: $\{x←a, y←b\}$
Example

Call: $p(x, x), p(a, y), \{}$

Call: $p, p, \{}$
Exit: $\{\}$

Call: $x, a, \{}$
Exit: $\{}\{x \leftarrow a\} = \{x \leftarrow a\}$

Call: $x, y, \{x \leftarrow a\}$

Call: $a, y, \{x \leftarrow a\}$
Exit: $\{x \leftarrow a\}\{y \leftarrow a\} = \{x \leftarrow a, y \leftarrow a\}$
Exit: $\{x \leftarrow a, y \leftarrow a\}$

Exit: $\{x \leftarrow a, y \leftarrow a\}$
Example

Call: \(p(x,x), p(a,b), \{\} \)

Call: \(p, p, \{\} \)
Exit: \(\{\} \)

Call: \(x, a, \{\} \)
Exit: \(\{\} \{x\leftarrow a\} = \{x\leftarrow a\} \)

Call: \(x, b, \{x\leftarrow a\} \)

Call: \(a, b, \{x\leftarrow a\} \)
Exit: \(false \)
Exit: \(false \)

Exit: \(false \)
Example

Call: \(p(x, x), p(y, f(y)), \{ \} \)

Call: \(p, p, \{ \} \)
Exit: \(\{ \} \)

Call: \(x, y, \{ \} \)
Exit: \(\{ \} \{x \leftarrow y\} = \{x \leftarrow y\} \)

Call: \(x, f(y), \{x \leftarrow y\} \)
Call: \(y, f(y), \{x \leftarrow y\} \)
Exit: \(false \)
Exit: \(false \)

Exit: \(false \)
Reason

Circularity Problem:
\[\{ x \leftarrow f(y), y \leftarrow f(y) \} \]

Unification Problem:
\[
\begin{align*}
 p(x, x) \{ x \leftarrow f(y), y \leftarrow f(y) \} &= p(f(y), f(y)) \\
 p(y, f(y)) \{ x \leftarrow f(y), y \leftarrow f(y) \} &= p(f(y), f(f(y)))
\end{align*}
\]
Solution

Before assigning a variable to an expression, first check that the variable does not occur within that expression.

This is called, oddly enough, the occur check test.

Prolog does not do the occur check (and is proud of it).
Resolution Principle
Propositional Resolution

\[
\{ \varphi_1, \ldots, \varphi, \ldots, \varphi_m \} \\
\{ \psi_1, \ldots, -\varphi, \ldots, \psi_n \} \\
\underline{\{ \varphi_1, \ldots, \varphi_m, \psi_1, \ldots, \psi_n \}}
\]
Resolution (Simple Version)

\[
\{ \phi_1, \ldots, \phi, \ldots, \phi_m \} \\
\{ \psi_1, \ldots, \neg \psi, \ldots, \psi_n \} \\
\overline{\{ \phi_1, \ldots, \phi_m, \psi_1, \ldots, \psi_n \} \sigma} \\
\text{where } \sigma = \text{mgu}(\phi, \psi)
\]
Example

\[
\{ \ p(a,y), r(y) \} \\
\{ \neg p(x,b), s(x) \} \\
\{ \ \{r(y), s(x)\}\{x \leftarrow a, y \leftarrow b\} \}
\]

\{ r(b), s(a) \}
Problem

\{ p(a,x) \}
\{ \neg p(x,b) \}
\underline{Failure}
Resolution (Improved)

\[\{ \varphi_1, \ldots, \varphi, \ldots, \varphi_m \} \]
\[\{ \psi_1, \ldots, \neg \psi, \ldots, \psi_n \} \]
\[\frac{}{\{ \varphi_1 \tau, \ldots, \varphi_m \tau, \psi_1, \ldots, \psi_n \} \sigma} \]

where \(\sigma = mgu(\varphi \tau, \psi) \)

where \(\tau \) is a variable renaming on \(\varphi \)
Example

\[
\begin{align*}
\{ p(a, x) \} & \quad \\longrightarrow \quad \{ p(a, y) \} \\
\{ \neg p(x, b) \} & \quad \\longrightarrow \quad \{ \neg p(x, b) \}
\end{align*}
\]

Failure

\[
\{\} \{ x \leftarrow a, y \leftarrow b \}
\]
Problem

\{p(x), p(y)\}
\{-p(u), -p(v)\}
\{p(y), -p(v)\}
\{p(x), -p(v)\}
\{p(y), -p(u)\}
\{p(x), -p(u)\}
Factors

If a subset of the literals in a clause Φ has a most general unifier γ, then the clause Φ' obtained by applying γ to Φ is called a *factor* of Φ.

Clause

\[\{p(x), p(f(y)), r(x, y)\} \]

Factors

\[\{p(f(y)), r(f(y), y)\} \]

\[\{p(x), p(f(y)), r(x, y)\} \]
Resolution (Final Version)

\[\Phi \]
\[\Psi \]

\[\frac{((\Phi' - \{\phi\}) \tau \cup (\Psi' - \{-\psi\})) \sigma}{\text{where } \phi \in \Phi', \text{ a factor of } \Phi} \]
\[\text{where } -\psi \in \Psi', \text{ a factor of } \Psi \]
\[\text{where } \sigma = mgu(\varphi \tau, \psi) \]
\[\text{where } \tau \text{ is a variable renaming on } \varphi \]
Example

\[
\begin{align*}
\{p(x), p(y)\} &\quad \rightarrow \quad \{p(x)\} \\
\{\neg p(u), \neg p(v)\} &\quad \rightarrow \quad \{\neg p(u)\} \\
\{p(y), \neg p(v)\} &\quad \rightarrow \quad \{\} \\
\{p(x), \neg p(v)\} &\quad \rightarrow \quad \{} \\
\{p(y), \neg p(u)\} &\quad \rightarrow \quad \{} \\
\{p(x), \neg p(u)\} &\quad \rightarrow \quad \{}
\end{align*}
\]
Need for Original Clauses

1. \{p(a,y), p(x,b)\} Premise
2. \{¬p(a,d)\} Premise
3. \{¬p(c,b)\} Premise
4. \{p(x,b)\} 1, 2
5. {} 3, 4

1. \{p(a,y), p(x,b)\} Premise
2. \{¬p(a,d)\} Premise
3. \{¬p(c,b)\} Premise
4. \{p(a,b)\} Factor of 1
Resolution Reasoning
Resolution Derivation

A *resolution derivation* of a conclusion from a set of premises is a finite sequence of clauses terminating in the conclusion in which each clause is either a premise or the result of applying the resolution principle to earlier elements of the sequence.
Example

1. \{p(art,bob)\} Premise
2. \{p(art,bud)\} Premise
3. \{p(bob,cal)\} Premise
4. \{p(bud,coe)\} Premise
5. \{-p(x,y), \neg p(y,z), g(x,z)\} Premise
Example

1. \{p(art, bob)\} Premise
2. \{p(art, bud)\} Premise
3. \{p(bob, cal)\} Premise
4. \{p(bud, coe)\} Premise
5. \{¬p(x, y), ¬p(y, z), g(x, z)\} Premise
6. \{¬p(bob, z), g(art, z)\} 1, 5
Example

1. \{p(art,bob)\}
 Premise
2. \{p(art,bud)\}
 Premise
3. \{p(bob,cal)\}
 Premise
4. \{p(bud,coe)\}
 Premise
5. \{\neg p(x,y), \neg p(y,z), g(x,z)\}
 Premise
6. \{\neg p(bob,z), g(art,z)\}
 1, 5
7. \{g(art,cal)\}
 3, 6
Example

1. \(\{ p(art, bob) \} \)
 Premise

2. \(\{ p(art, bud) \} \)
 Premise

3. \(\{ p(bob, cal) \} \)
 Premise

4. \(\{ p(bud, coe) \} \)
 Premise

5. \(\{ \neg p(x, y), \neg p(y, z), g(x, z) \} \)
 Premise

6. \(\{ \neg p(bob, z), g(art, z) \} \)
 1, 5

7. \(\{ g(art, cal) \} \)
 3, 6

8. \(\{ \neg p(bud, z), g(art, z) \} \)
 2, 5
Example

1. \{p(art, bob)\}
 Premise
2. \{p(art, bud)\}
 Premise
3. \{p(bob, cal)\}
 Premise
4. \{p(bud, coe)\}
 Premise
5. \{\neg p(x, y), \neg p(y, z), g(x, z)\}
 Premise
6. \{\neg p(bob, z), g(art, z)\}
 1, 5
7. \{g(art, cal)\}
 3, 6
8. \{\neg p(bud, z), g(art, z)\}
 2, 5
9. \{g(art, coe)\}
 4, 8
Example

1. \{p(art,bob)\} \hspace{1cm} \text{Premise}
2. \{p(art,bud)\} \hspace{1cm} \text{Premise}
3. \{p(bob,cal)\} \hspace{1cm} \text{Premise}
4. \{p(bud,coe)\} \hspace{1cm} \text{Premise}
5. \{¬p(x,y), ¬p(y,z), g(x,z)\} \hspace{1cm} \text{Premise}
6. \{¬p(bob,z), g(art,z)\} \hspace{1cm} 1, 5
7. \{g(art,cal)\} \hspace{1cm} 3, 6
8. \{¬p(bud,z), g(art,z)\} \hspace{1cm} 2, 5
9. \{g(art,coe)\} \hspace{1cm} 4, 8
Example

1. \{p(\text{art},\text{bob})\}
 Premise

2. \{p(\text{art},\text{bud})\}
 Premise

3. \{p(\text{bob},\text{cal})\}
 Premise

4. \{p(\text{bud},\text{coe})\}
 Premise

5. \{\neg p(x,y), \neg p(y,z), g(x,z)\}
 Premise

6. \{\neg p(\text{bob},z), g(\text{art},z)\}
 1, 5

7. \{g(\text{art},\text{cal})\}
 3, 6

8. \{\neg p(\text{bud},z), g(\text{art},z)\}
 2, 5

9. \{g(\text{art},\text{coe})\}
 4, 8
Example

1. \{p(art, bob)\}
 Premise

2. \{p(art, bud)\}
 Premise

3. \{p(bob, cal)\}
 Premise

4. \{p(bud, coe)\}
 Premise

5. \{-p(x, y), -p(y, z), g(x, z)\}
 Premise

6. \{-p(bob, z), g(art, z)\}
 1, 5

7. \{g(art, cal)\}
 3, 6

8. \{-p(bud, z), g(art, z)\}
 2, 5

9. \{g(art, coe)\}
 4, 8
Resolution Not Generatively Complete

Using the Resolution Principle alone, it is not possible to generate every clause that is logically entailed by a set of premises.

Examples:

\[\{\} \models \{p(a), \neg p(a)\} \]

But resolution cannot generate these results.
Unsatisfiability
Demonstrating Unsatisfiability

Start with premises.

Apply resolution repeatedly.

If empty clause generated, the original set is unsatisfiable.
Example

1. \(\{p(a,b), q(a,c)\} \)
 Premise

2. \(\{\neg p(x,y), r(x)\} \)
 Premise

3. \(\{\neg q(x,y), r(x)\} \)
 Premise

4. \(\{\neg r(z)\} \)
 Premise
Example

1. \{p(a,b), q(a,c)\} \hspace{1cm} \text{Premise}
2. \{\neg p(x,y), r(x)\} \hspace{1cm} \text{Premise}
3. \{\neg q(x,y), r(x)\} \hspace{1cm} \text{Premise}
4. \{\neg r(z)\} \hspace{1cm} \text{Premise}
5. \{q(a,c), r(a)\} \hspace{1cm} 1, 2
Example

1. \{p(a,b), q(a,c)\}
 Premise

2. \{\neg p(x,y), r(x)\}
 Premise

3. \{\neg q(x,y), r(x)\}
 Premise

4. \{\neg r(z)\}
 Premise

5. \{q(a,c), r(a)\}
 1, 2

6. \{r(a)\}
 5, 3
Example

1. \{p(a,b), q(a,c)\} Premise
2. \{\neg p(x,y), r(x)\} Premise
3. \{\neg q(x,y), r(x)\} Premise
4. \{\neg r(z)\} Premise
5. \{q(a,c), r(a)\} 1, 2
6. \{r(a)\} 5, 3
7. {} 6, 4
Logical Entailment
Provability

A *resolution derivation* of a clause φ from a set Δ of clauses is a sequence of clauses terminating in φ in which each item is
(1) a member of Δ or
(2) the result of applying the resolution to earlier items.

A sentence φ is *provable* from a set of sentences Δ by resolution if and only if there is a derivation of the empty clause from the clausal form of $\Delta \cup \{\neg \varphi\}$.

A resolution *proof* is a derivation of the empty clause from the clausal form of the premises and the negation of the desired conclusion.
Example

Everybody loves somebody. Everybody loves a lover. Show that everybody loves everybody.

\[\forall x. \exists y. \text{loves}(x, y) \]
\[\forall u. \forall v. \forall w. (\text{loves}(v, w) \implies \text{loves}(u, v)) \]
\[\neg \forall x. \forall y. \text{loves}(x, y) \]

\{ \text{loves}(x, f(x)) \}
\{ \neg \text{loves}(v, w), \text{loves}(u, v) \}
\{ \neg \text{loves}(jack, jill) \}
Example

1. \{loves(x,f(x))\} \hspace{1cm} \text{Premise}
2. \{¬loves(v,w), loves(u,v)\} \hspace{1cm} \text{Premise}
3. \{¬loves(jack,jill)\} \hspace{1cm} \text{Negated Goal}
Example (continued)

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{loves(x,f(x))}</td>
</tr>
<tr>
<td>2</td>
<td>{\neg loves(v,w), loves(u,v)}</td>
</tr>
<tr>
<td>3</td>
<td>{\neg loves(jack,jill)}</td>
</tr>
<tr>
<td>4</td>
<td>{loves(u,x)}</td>
</tr>
</tbody>
</table>

1, 2

Premise

Premise

Negated Goal
Example (concluded)

1. \{loves(x,f(x))\}
 Premise

2. \{¬loves(v,w), loves(u,v)\}
 Premise

3. \{¬loves(jack,jill)\}
 Negated Goal

4. \{loves(u,x)\}
 1, 2

5. {}
 4, 3
Harry and Ralph

Every horse can outrun every dog. Some greyhound can outrun every rabbit. Show that every horse can outrun every rabbit.

\[\forall x. \forall y. (h(x) \land d(y) \Rightarrow f(x, y)) \]

\[\exists y. (g(y) \land \forall z. (r(z) \Rightarrow f(y, z))) \]

\[\forall y. (g(y) \Rightarrow d(y)) \]

\[\forall x. \forall y. \forall z. (f(x, y) \land f(y, z) \Rightarrow f(x, z)) \]

\[\neg \forall x. \forall y. (h(x) \land r(y) \Rightarrow f(x, y)) \]
Harry and Ralph

∀x.∀y.(h(x) ∧ d(y) ⇒ f(x,y))
∃y.(g(y) ∧ ∀z.(r(z) ⇒ f(y,z)))
∀y.(g(y) ⇒ d(y))
∀x.∀y.∀z.(f(x,y) ∧ f(y,z) ⇒ f(x,z))

{¬h(x),¬d(y),f(x,y)}
{g(greg)}
{¬r(z),f(greg,z)}
{¬g(y),d(y)}
{¬f(x,y),¬f(y,z),f(x,z)}
Harry and Ralph

$$\neg \forall x. \forall y. (h(x) \land r(y) \Rightarrow f(x, y))$$

$$\{h(harry)\}$$
$$\{r(ralph)\}$$
$$\{\neg f(harry, ralph)\}$$
Harry and Ralph

1. \{\neg h(x), \neg d(y), f(x,y)\}
2. \{g(\text{greg})\}
3. \{\neg r(z), f(\text{greg},z)\}
4. \{\neg g(y), d(y)\}
5. \{\neg f(x,y), \neg f(y,z), f(x,z)\}
6. \{h(\text{harry})\}
7. \{r(\text{ralph})\}
8. \{\neg f(\text{harry},\text{ralph})\}
9. \{d(\text{greg})\}
Harry and Ralph

1. \{\neg h(x), \neg d(y), f(x,y)\}
2. \{g(greg)\}
3. \{\neg r(z), f(greg,z)\}
4. \{\neg g(y), d(y)\}
5. \{\neg f(x,y), \neg f(y,z), f(x,z)\}
6. \{h(harry)\}
7. \{r(ralph)\}
8. \{\neg f(harry,ralph)\}
9. \{d(greg)\}
10. \{\neg d(y), f(harry,y)\}
Harry and Ralph

1. \{¬h(x), ¬d(y), f(x,y)\}
2. \{g(greg)\}
3. \{¬r(z), f(greg,z)\}
4. \{¬g(y), d(y)\}
5. \{¬f(x,y), ¬f(y,z), f(x,z)\}
6. \{h(harry)\}
7. \{r(ralph)\}
8. \{¬f(harry,ralph)\}
9. \{d(greg)\}
10. \{¬d(y), f(harry,y)\}
11. \{f(harry,greg)\}
Harry and Ralph

1. \{\neg h(x), \neg d(y), f(x,y)\}
2. \{g(greg)\}
3. \{\neg r(z), f(greg,z)\}
4. \{\neg g(y), d(y)\}
5. \{\neg f(x,y), \neg f(y,z), f(x,z)\}
6. \{h(harry)\}
7. \{r(ralph)\}
8. \{\neg f(harry,ralph)\}
9. \{d(greg)\}
10. \{\neg d(y), f(harry,y)\}
11. \{f(harry,greg)\}
12. \{f(greg,ralph)\}
Harry and Ralph

1. {¬h(x), ¬d(y), f(x,y)}
2. {g(greg)}
3. {¬r(z), f(greg,z)}
4. {¬g(y), d(y)}
5. {¬f(x,y), ¬f(y,z), f(x,z)}
6. {h(harry)}
7. {r(ralph)}
8. {¬f(harry,ralph)}
9. {d(greg)}
10. {¬d(y), f(harry,y)}
11. {f(harry,grev)}
12. {f(greg,ralph)}
13. {¬f(greg,z), f(harry,z)}
Harry and Ralph

1. \{\neg h(x), \neg d(y), f(x,y)\}
2. \{g(greg)\}
3. \{\neg r(z), f(greg,z)\}
4. \{\neg g(y), d(y)\}
5. \{\neg f(x,y), \neg f(y,z), f(x,z)\}
6. \{h(harry)\}
7. \{r(ralph)\}
8. \{\neg f(harry, ralph)\}
9. \{d(greg)\}
10. \{\neg d(y), f(harry,y)\}
11. \{f(harry, greg)\}
12. \{f(greg, ralph)\}
13. \{\neg f(greg, z), f(harry, z)\}
14. \{f(harry, ralph)\}
Harry and Ralph

1. \(\{\neg h(x), \neg d(y), f(x,y)\}\)
2. \(\{g(\text{greg})\}\)
3. \(\{\neg r(z), f(\text{greg},z)\}\)
4. \(\{\neg g(y), d(y)\}\)
5. \(\{\neg f(x,y), \neg f(y,z), f(x,z)\}\)
6. \(\{h(\text{harry})\}\)
7. \(\{r(\text{ralph})\}\)
8. \(\{\neg f(\text{harry},\text{ralph})\}\)
9. \(\{d(\text{greg})\}\)
10. \(\{\neg d(y), f(\text{harry},y)\}\)
11. \(\{f(\text{harry},\text{greg})\}\)
12. \(\{f(\text{greg},\text{ralph})\}\)
13. \(\{\neg f(\text{greg},z), f(\text{harry},z)\}\)
14. \(\{f(\text{harry},\text{ralph})\}\)
15. \(\{\}\)
Inferential Equivalence

Equivalence Theorem: It is possible to prove a conclusion from a set of premises using Herbrand Resolution if and only if it is possible to prove that conclusion from those premises using Fitch.
Answer Extraction
Determining Logical Entailment

To determine whether a set Δ of sentences logically entails a closed sentence φ, rewrite $\Delta \cup \{\neg \varphi\}$ in clausal form and try to derive the empty clause.
Example

Show that \(p(x) \implies q(x) \) and \(p(a) \) logically entail \(\exists z. q(z) \).

1. \(\{\neg p(x), q(x)\} \) Premise
2. \(\{p(a)\} \) Premise
3. \(\{\neg q(z)\} \) Goal
4. \(\{\neg p(z)\} \) 1,3
5. \(\{\} \) 2,4
Alternate Method

Basic Method: To determine whether a set Δ of sentences logically entails a closed sentence φ, rewrite $\Delta \cup \{\neg \varphi\}$ in clausal form and try to derive the empty clause.

Alternate Method: To determine whether a set Δ of sentences logically entails a closed sentence φ, rewrite $\Delta \cup \{\varphi \Rightarrow \text{goal}\}$ in clausal form and try to derive goal.

Intuition: The sentence $(\varphi \Rightarrow \text{goal})$ is equivalent to the sentence $(\neg \varphi \lor \text{goal})$.
Example

Show that \((p(x) \Rightarrow q(x))\) and \(p(a)\) logically entail \(\exists z. q(z)\).

1. \(\{\neg p(x), q(x)\}\) \(p(x) \Rightarrow q(x)\)
2. \(\{p(a)\}\) \(p(a)\)
3. \(\{\neg q(z), goal\}\) \(\exists z. q(z) \Rightarrow goal\)
4. \(\{\neg p(z), goal\}\) 1, 3
5. \(\{goal\}\) 2, 4
Answer Extraction Method

Alternate Method for Logical Entailment: To determine whether a set Δ of sentences logically entails a closed sentence φ, rewrite $\Delta \cup \{\varphi \Rightarrow \text{goal}\}$ in clausal form and try to derive goal.

Method for Answer Extraction: To get values for free variables ν_1, \ldots, ν_n in φ for which Δ logically entails φ, rewrite $\Delta \cup \{\varphi \Rightarrow \text{goal}(\nu_1, \ldots, \nu_n)\}$ in clausal form and try to derive $\text{goal}(\nu_1, \ldots, \nu_n)$.

Intuition: The sentence $(q(z) \Rightarrow \text{goal}(z))$ says that, whenever, z satisfies q, it satisfies the “goal”.
Example

Given \((p(x) \Rightarrow q(x))\) and \(p(a)\), find a term \(\tau\) such that \(q(\tau)\) is true.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>({\neg p(x), q(x)})</td>
<td>(p(x) \Rightarrow q(x))</td>
</tr>
<tr>
<td>2.</td>
<td>({p(a)})</td>
<td>(p(a))</td>
</tr>
<tr>
<td>3.</td>
<td>({\neg q(z), goal(z)})</td>
<td>(q(z) \Rightarrow goal(z))</td>
</tr>
<tr>
<td>4.</td>
<td>({\neg p(z), goal(z)})</td>
<td>1,3</td>
</tr>
<tr>
<td>5.</td>
<td>({goal(a)})</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Example

Given \(p(x) \Rightarrow q(x) \) and \(p(a) \) and \(p(b) \), find a term \(\tau \) such that \(q(\tau) \) is true.

1. \(\{\neg p(x), q(x)\} \) \hspace{1cm} p(x) \Rightarrow q(x)
2. \(\{p(a)\} \) \hspace{1cm} p(a)
3. \(\{p(b)\} \) \hspace{1cm} p(b)
4. \(\{\neg q(z), \text{goal}(z)\} \) \hspace{1cm} q(z) \Rightarrow \text{goal}(z)
5. \(\{\neg p(z), \text{goal}(z)\} \) \hspace{1cm} 1,4
6. \(\{\text{goal}(a)\} \) \hspace{1cm} 2,5
7. \(\{\text{goal}(b)\} \) \hspace{1cm} 3,5
Example

Given \((p(x) \Rightarrow q(x))\) and \((p(a) \lor p(b))\), find a term \(\tau\) such that \(q(\tau)\) is true.

1. \(\{\neg p(x), q(x)\}\) \hspace{1cm} p(x) \Rightarrow q(x)
2. \(\{p(a), p(b)\}\) \hspace{1cm} p(a) \lor p(b)
3. \(\{\neg q(z), \text{goal}(z)\}\) \hspace{1cm} q(z) \Rightarrow \text{goal}(z)
4. \(\{\neg p(z), \text{goal}(z)\}\) \hspace{1cm} 1,3
5. \(\{p(b), \text{goal}(a)\}\) \hspace{1cm} 2,4
6. \(\{\text{goal}(a), \text{goal}(b)\}\) \hspace{1cm} 4,5
Example

Given \((p(x) \implies q(x))\) and \((p(a) \lor p(b))\), find a term \(\tau\) such that \(q(\tau)\) is true.

1. \(\{\neg p(x), q(x)\}\) \hspace{1cm} p(x) \implies q(x)
2. \(\{p(a), p(b)\}\) \hspace{1cm} p(a) \lor p(b)
3. \(\{\neg q(z), goal(z)\}\) \hspace{1cm} q(z) \implies goal(z)
4. \(\{\neg p(z), goal(z)\}\) \hspace{1cm} 1,3
5. \(\{p(b), goal(a)\}\) \hspace{1cm} 2,4
6. \(\{goal(a), goal(b)\}\) \hspace{1cm} 4,5
Kinship

Art is the parent of Bob and Bud.
Bob is the parent of Cal and Coe.
A grandparent is a parent of a parent.

\[p(\text{art}, \text{bob}) \]
\[p(\text{art}, \text{bud}) \]
\[p(\text{bob}, \text{cal}) \]
\[p(\text{bob}, \text{coe}) \]
\[p(x, y) \land p(y, z) \implies g(x, z) \]
Example

Given \((p(x) \Rightarrow q(x))\) and \((p(a) \lor p(b))\), find a term \(\tau\) such that \(q(\tau)\) is true.

1. \(\{\neg p(x), q(x)\}\) \hspace{1cm} \(p(x) \Rightarrow q(x)\)
2. \(\{p(a), p(b)\}\) \hspace{1cm} \(p(a) \lor p(b)\)
3. \(\{\neg q(z), goal(z)\}\) \hspace{1cm} \(q(z) \Rightarrow goal(z)\)
4. \(\{\neg p(z), goal(z)\}\) \hspace{1cm} 1,3
5. \(\{p(b), goal(a)\}\) \hspace{1cm} 2,4
6. \(\{goal(a), goal(b)\}\) \hspace{1cm} 4,5
Is Art the Grandparent of Coe?

1. \(\{p(art, bob)\}\)
2. \(\{p(art, bud)\}\)
3. \(\{p(bob, cal)\}\)
4. \(\{p(bud, coe)\}\)
5. \(\{\neg p(x,y), \neg p(y,z), g(x,z)\}\)
6. \(\{\neg g(art, coe), goal()\}\)
7. \(\{\neg p(art, y), \neg p(y, coe), goal()\}\)
8. \(\{\neg p(bud, coe), goal()\}\)
9. \(\{goal()\}\)
Who is the Grandparent of Coe?

1. \(\{p(art, bob)\}\) Premise
2. \(\{p(art, bud)\}\) Premise
3. \(\{p(bob, cal)\}\) Premise
4. \(\{p(bud, coe)\}\) Premise
5. \(\{\neg p(x,y), \neg p(y,z), g(x,z)\}\) Premise
6. \(\{\neg g(x,coe), goal(x)\}\) Goal
7. \(\{\neg p(x,y), \neg p(y,coe), goal(x)\}\) 3, 6
8. \(\{\neg p(bud,coe), goal(art)\}\) 2, 5
9. \(\{goal(art)\}\) 4, 8
Who Are the Grandchildren of Art?

1. \{p(\text{art}, \text{bob})\} \quad p(\text{art}, \text{bob})
2. \{p(\text{art}, \text{bud})\} \quad p(\text{art}, \text{bud})
3. \{p(\text{bob}, \text{cal})\} \quad p(\text{bob}, \text{cal})
4. \{p(\text{bob}, \text{coe})\} \quad p(\text{bob}, \text{coe})
5. \{\neg p(x, y), \neg p(y, z), g(x, z)\} \quad p(x, y) \land p(y, z) \Rightarrow g(x, z)
6. \{\neg g(\text{art}, z), \text{goal}(z)\} \quad g(\text{art}, z) \Rightarrow \text{goal}(z)
7. \{\neg p(\text{art}, y), \neg p(y, z), \text{goal}(z)\} \quad 5, 6
8. \{\neg p(\text{bob}, z), \text{goal}(z)\} \quad 1, 7
9. \{\neg p(\text{bud}, z), \text{goal}(z)\} \quad 2, 7
10. \{\text{goal}(\text{cal})\} \quad 3, 8
11. \{\text{goal}(\text{coe})\} \quad 4, 8
People and their Grandchildren?

1. \(\{p(\text{art}, \text{bob})\} \) \(p(\text{art}, \text{bob}) \)
2. \(\{p(\text{art}, \text{bud})\} \) \(p(\text{art}, \text{bud}) \)
3. \(\{p(\text{bob}, \text{cal})\} \) \(p(\text{bob}, \text{cal}) \)
4. \(\{p(\text{bob}, \text{coe})\} \) \(p(\text{bob}, \text{coe}) \)
5. \(\{\neg p(x, y), \neg p(y, z), g(x, z)\} \) \(p(x, y) \land p(y, z) \Rightarrow g(x, z) \)
6. \(\{\neg g(x, z), \text{goal}(x, z)\} \) \(g(x, z) \Rightarrow \text{goal}(x, z) \)
7. \(\{\neg p(x, y), \neg p(y, z), \text{goal}(x, z)\} \) \(5, 6 \)
8. \(\{\neg p(\text{bob}, z), \text{goal}(\text{art}, z)\} \) \(1, 7 \)
9. \(\{\neg p(\text{bud}, z), \text{goal}(\text{art}, z)\} \) \(2, 7 \)
10. \(\{\text{goal}(\text{art}, \text{cal})\} \) \(3, 8 \)
11. \(\{\text{goal}(\text{art}, \text{coe})\} \) \(4, 8 \)
Variable Length Lists

Example

\[[a, b, c, d]\]

Representation as Term

\[\text{cons}(a, \text{cons}(b, \text{cons}(c, \text{cons}(d, \text{nil}))))\]

Shorthand

\[(a . (b . (c . (d . \text{nil}))))\]

Shorthand

\[[a, b, c, d]\]
List Membership

Membership axioms:

\[\text{member}(u, u . x) \]
\[\text{member}(u, v . y) \iff \text{member}(u, y) \]

Membership Clauses:

\{ \text{member}(u, u . x) \}\n\{ \text{member}(u, v . y), \neg \text{member}(u, y) \}\n
Answer Extraction for \text{member}(w, [a, b, c])

\{ \neg \text{member}(w, a.b.c. \text{nil}), \text{goal}(w) \}\n\{ \text{goal}(a) \}\n\{ \neg \text{member}(w, b.c. \text{nil}) \}\n\{ \text{goal}(b) \}
List Concatenation

Concatenation Axioms:

\[
\text{append}(\text{nil}, y, y)
\]
\[
\text{append}(w. x, y, w. z) \iff \text{append}(x, y, z)
\]

Concatenation Clauses:

\{\text{append}(\text{nil}, y, y)\}
\{\text{append}(w. x, y, w. z), \neg \text{append}(x, y, z)\}

Answer Extraction for \text{append}([a,b],[c,d],z):

\{\neg \text{append}(a. b. \text{nil}, c. d. \text{nil}, z), \text{goal}(z)\}
\{\neg \text{append}(b. \text{nil}, c. d. \text{nil}, z1), \text{goal}(a. z1)\}
\{\neg \text{append}(\text{nil}, c. d. \text{nil}, z2), \text{goal}(a. b. z2)\}
\{\text{goal}(a. b. c. d. \text{nil})\}
List Reversal

Reversal Example:

\[reverse([a,b,c,d], [d,c,b,a]) \]

Reversal Axioms:

\[
\begin{align*}
reverse(x, y) & \iff reverse2(x, nil, y) \\
reverse2(nil, y, y) & \\
reverse2(w.x, y, z) & \iff reverse2(x, w.y, z)
\end{align*}
\]

Answer Extraction for \(reverse([a,b,c,d], z) \):

\[
\{ \neg reverse(a.b.c.d.nil, z), \text{goal}(z) \} \\
\ldots \\
\{ \text{goal}(d.c.b.a.nil) \}
\]