Introduction to Logic

Relational Logic

Michael Genesereth
Computer Science Department
Stanford University
Premises:
 If Jack knows Jill, then Jill knows Jack.
 Jack knows Jill.

Conclusion:
 Is it the case that Jill knows Jack?
Premises:

If one person knows another, then the second person knows the first.

Jack knows Jill.

Conclusion:

Is it the case that Jill knows Jack?

How do we represent the first premise in a way that allows us to derive the desired conclusion?
New Linguistic Features:
 Variables
 Quantifiers

Sample Sentence:

$$\forall x. \forall y. (knows(x,y) \Rightarrow knows(y,x))$$
Syntax

Semantics

Examples, Examples, Examples

Properties of Sentences

Logical Entailment

Decidability
Syntax
Components of Language

Words

\[a, b, g, p \]

Terms

\[g(a,a) \]

Sentences

\[\forall x. (p(x) \Rightarrow p(x,g(x,x))) \]
Words are strings of letters, digits, and occurrences of the underscore character.

Variables begin with characters from the end of the alphabet (from u through z).

\[u, v, w, x, y, z \]

Constants begin with digits or letters from the beginning of the alphabet (from a through t).

\[a, b, c, 123, comp225, barack_obama \]
Constants

Object constants represent objects.

joe, stanford, usa, 2345

Relation constants represent relations.

knows, loves
The *arity* of a relation constant is the number of arguments it takes.

Unary relation constant - 1 argument

Binary relation constant - 2 arguments

Ternary relation constant - 3 arguments

n-ary relation constant - *n* arguments
Signatures

A signature consist of a set of object constants and a set of relation constants together with a specification of arity for the relation constants.

Object Constants: \(a, b\)

Unary Relation Constant: \(p\)
Binary Relation Constant: \(q\)
A term is either a variable or an object constant.

Terms represent objects.

Terms are analogous to noun phrases in natural language.
Three types of sentences in Relational Logic:

Relational sentences - analogous to the simple sentences in natural language

Logical sentences - analogous to the logical sentences in natural language

Quantified sentences - sentences that express the significance of variables
A *relational sentence* is an expression formed from an n-ary relation constant and n terms enclosed in parentheses and separated by commas.

$$q(a,y)$$

Relational sentences are *not* terms and *cannot* be nested in relational sentences.

No! $q(a,q(a,y))$ No!
Logical sentences in Herbrand Logic are analogous to those in Propositional Logic.

\[
\begin{align*}
(\neg q(a,b)) \\
(p(a) \land p(b)) \\
(p(a) \lor p(b)) \\
(q(x,y) \Rightarrow q(y,x)) \\
(q(x,y) \Leftrightarrow q(y,x))
\end{align*}
\]
Quantified Sentences

Universal sentences assert facts about all objects.

\[
(\forall x. (p(x) \Rightarrow q(x,x)))
\]

Existential sentence assert the existence of objects with given properties.

\[
(\exists x. (p(x) \land q(x,x)))
\]

Quantified sentences can be nested within other sentences.

\[
(\forall x. p(x)) \lor (\exists x. q(x,x)) \\
(\forall x. (\exists y. q(x,y)))
\]
Parentheses can be removed when precedence allows us to reconstruct sentences correctly.

Precedence relations same as in Propositional Logic with quantifiers being of *higher* precedence than logical operators.

\[
\forall x. p(x) \Rightarrow q(x,x) \rightarrow (\forall x. p(x)) \Rightarrow q(x,x)
\]

\[
\exists x. p(x) \land q(x,x) \rightarrow (\exists x. p(x)) \land q(x,x)
\]
An expression is *ground* if and only if it contains no variables.

Ground sentence:

\[p(a) \]

Non-Ground Sentence:

\[\forall x. p(x) \]
An occurrence of a variable is **bound** if and only if it lies in the scope of a quantifier of that variable. Otherwise, it is **free**.

\[\exists y. q(x, y) \]

In this example, \(x \) is free and \(y \) is bound.
A sentence is **open** if and only if it has free variables. Otherwise, it is **closed**.

Open sentence:

\[\exists y. q(x, y) \]

Closed Sentence:

\[\forall x. \exists y. q(x, y) \]
Semantics
The *Herbrand base* for a Relational language is the set of all ground relational sentences that can be formed from the vocabulary of the language.
Object Constants: a, b
Unary Relation Constant: p
Binary Relation Constant: q

Herbrand Base:

$$\{p(a), p(b), q(a,a), q(a,b), q(b,a), q(b,b)\}$$
A truth assignment is an association between ground atomic sentences and the truth values true or false. As with Propositional Logic, we use 1 as a synonym for true and 0 as a synonym for false.

\[
\begin{align*}
p(a)^i &= 1 \\
p(b)^i &= 0 \\
q(a,a)^i &= 1 \\
q(a,b)^i &= 0 \\
q(b,a)^i &= 1 \\
q(b,b)^i &= 0
\end{align*}
\]
A *sentential truth assignment* is an association between arbitrary sentences in a Herbrand language and the truth values 1 and 0.

<table>
<thead>
<tr>
<th>Truth Assignment</th>
<th>Sentential Truth Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(a)^i = 1$</td>
<td>$(p(a) \lor p(b))^i = 1$</td>
</tr>
<tr>
<td>$p(b)^i = 0$</td>
<td>$(p(a) \land \neg p(b))^i = 1$</td>
</tr>
</tbody>
</table>

Each base truth assignment leads to a particular sentential truth assignment based on the type of sentence.
Logical Sentences

$(-\varphi)^i = 1$ if and only if $\varphi^i = 0$

$(\varphi \land \psi)^i = 1$ if and only if $\varphi^i = 1$ and $\psi^i = 1$

$(\varphi \lor \psi)^i = 1$ if and only if $\varphi^i = 1$ or $\psi^i = 1$

$(\varphi \Rightarrow \psi)^i = 1$ if and only if $\varphi^i = 0$ or $\psi^i = 1$

$(\varphi \Leftrightarrow \psi)^i = 1$ if and only if $\varphi^i = \psi^i$
An instance of an expression is an expression in which all free variables have been consistently replaced by ground terms.

Consistent replacement here means that, if one occurrence of a variable is replaced by a ground term, then all occurrences of that variable are replaced by the same ground term.
A *universally quantified sentence* is true for a truth assignment if and only if every instance of the scope of the quantified sentence is true for that assignment.

An *existentially quantified sentence* is true for a truth assignment if and only if some instance of the scope of the quantified sentence is true for that assignment.
Truth Assignment:

\[p(a)^i = 1 \quad q(a,a)^i = 1 \]
\[p(b)^i = 0 \quad q(a,b)^i = 0 \]
\[q(b,a)^i = 1 \]
\[q(b,b)^i = 0 \]

Sentence:

\[\forall x. (p(x) \Rightarrow q(x,x)) \]

Instances:

\[p(a) \Rightarrow q(a,a) \]
\[p(b) \Rightarrow q(b,b) \]
Truth Assignment:
\[
p(a)^i = 1 \quad q(a,a)^i = 1
\]
\[
p(b)^i = 0 \quad q(a,b)^i = 0
\]
\[
p(b)^i = 0 \quad q(b,a)^i = 1
\]
\[
q(b,b)^i = 0
\]

Sentence:
\[
\forall x. (p(x) \Rightarrow q(x,x))
\]

Instances:
\[
p(a) \Rightarrow q(a,a) \checkmark
\]
\[
p(b) \Rightarrow q(b,b)
\]
Example

Truth Assignment:
\[p(a)^i = 1 \quad q(a,a)^i = 1 \]
\[p(b)^i = 0 \quad q(a,b)^i = 0 \]
\[q(b,a)^i = 1 \]
\[q(b,b)^i = 0 \]

Sentence:
\[\forall x. (p(x) \implies q(x,x)) \]

Instances:
\[p(a) \implies q(a,a) \checkmark \]
\[p(b) \implies q(b,b) \checkmark \]
Truth Assignment:

\[p(a)^i = 1 \]
\[q(a,a)^i = 1 \]
\[p(b)^i = 0 \]
\[q(a,b)^i = 0 \]
\[q(b,a)^i = 1 \]
\[q(b,b)^i = 0 \]

Sentence:

\[\forall x. (p(x) \Rightarrow q(x,x)) \]

Instances:

\[p(a) \Rightarrow q(a,a) \]
\[p(b) \Rightarrow q(b,b) \]

Example

Truth Assignment:

\[p(a)^i = 1 \quad q(a,a)^i = 1 \]
\[p(b)^i = 0 \quad q(a,b)^i = 0 \]
\[q(b,a)^i = 1 \quad q(b,b)^i = 0 \]

Sentence:

\[\forall x. \exists y. q(x,y) \]

Instances:

\[\exists y. q(a,y) \quad \exists y. q(b,y) \]
\[q(a,a) \quad q(b,a) \]
\[q(a,b) \quad q(b,b) \]
A truth assignment satisfies *a sentence with free variables* if and only if it satisfies every instance of that sentence. (In other words, we can think of all free variables as being universally quantified.)

\[(\exists y. q(x,y))^i = (\forall x. \exists y. q(x,y))^i\]

A truth assignment satisfies *a set of sentences* if and only if it satisfies every sentence in the set.
Example - Sorority World
<table>
<thead>
<tr>
<th></th>
<th>Abby</th>
<th>Bess</th>
<th>Cody</th>
<th>Dana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abby</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Bess</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Cody</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dana</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Object Constants: *abby, bess, cody, dana*

Binary Relation Constant: *likes*

Herbrand base has 16 ground relational sentences.
\neg \text{likes}(abby,abby) \quad \neg \text{likes}(bess,abby) \\
\neg \text{likes}(abby,bess) \quad \neg \text{likes}(bess,bess) \\
\text{likes}(abby,cody) \quad \quad \text{likes}(bess,cody) \\
\neg \text{likes}(abby,dana) \quad \neg \text{likes}(bess,dana) \\
\quad \text{likes}(cody,abby) \quad \quad \quad \neg \text{likes}(dana,abby) \\
\text{likes}(cody,bess) \quad \quad \neg \text{likes}(dana,bess) \\
\neg \text{likes}(cody,cody) \quad \quad \quad \text{likes}(dana,cody) \\
\text{likes}(cody,dana) \quad \quad \quad \quad \neg \text{likes}(dana,dana)
Abby likes everyone Bess likes.
If Bess likes a girl, then Abby also likes her.

\[\forall y. (\text{likes}(\text{bess}, y) \implies \text{likes}(\text{abby}, y)) \]

Cody likes everyone who likes her.
If some girl likes Cody, then Cody likes that girl.

\[\forall x. (\text{likes}(x, \text{cody}) \implies \text{likes}(\text{cody}, x)) \]
Cody likes somebody who likes her.
There is someone who likes cody and is liked by Cody.

\[\exists y. (\text{likes}(\text{cody}, y) \land \text{likes}(y, \text{cody})) \]

Nobody likes herself.
It is not the case that someone likes herself.

\[\neg \exists x. \text{likes}(x, x) \]
Everybody likes somebody.

$$\forall x. \exists y. \text{likes}(x,y)$$

There is somebody whom everybody likes.

$$\exists y. \forall x. \text{likes}(x,y)$$
Example

Abby

Bess

Cody

Dana
Everybody Likes Somebody
Everybody Likes Somebody

Abby Bess

Cody Dana
Everybody Likes Somebody

- Abby
- Bess
- Cody
- Dana

Diagram shows connections between individuals:
- Abby likes Bess
- Cody likes Dana
Everybody Likes Somebody
Everybody Likes Somebody
There is Somebody Whom Everyone Likes
Example - Blocks World
Blocks World
Object Constants: a, b, c, d, e

Unary Relation Constants:
- *clear* - blocks with no blocks on top.
- *table* - blocks on the table.

Binary Relation Constants:
- *on* - pairs of blocks in which first is on the second.
- *above* - pairs in which first block is above the second.

Ternary Relation Constant:
- *stack* - triples of blocks arranged in a stack.
<table>
<thead>
<tr>
<th></th>
<th>on(a,a)</th>
<th>on(a,b)</th>
<th>on(a,c)</th>
<th>on(a,d)</th>
<th>on(a,e)</th>
<th>¬on(d,a)</th>
<th>¬on(d,b)</th>
<th>¬on(d,c)</th>
<th>¬on(d,d)</th>
<th>on(d,e)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Definitions

Definition of *clear*:

\[\forall y. (\text{clear}(y) \iff \neg \exists x. \text{on}(x,y)) \]

Definition of *table*:

\[\forall x. (\text{table}(x) \iff \neg \exists y. \text{on}(x,y)) \]
Definition of *stack*:

\[\forall x. \forall y. \forall z. (\text{stack}(x,y,z) \iff \text{on}(x,y) \land \text{on}(y,z)) \]

Definition of *above*:

\[\forall x. \forall z. (\text{above}(x,z) \iff \text{on}(x,z) \lor \exists y. (\text{on}(x,y) \land \text{above}(y,z))) \]

\[\forall x. \neg \text{above}(x,x) \]
Example - Modular Arithmetic
In Modular Arithmetic of modulus 4 there are just 4 numbers (0, 1, 2, 3).

\[
\begin{align*}
0+0 &= 0 \\
0+1 &= 1 \\
0+2 &= 2 \\
0+3 &= 3 \\
1+0 &= 1 \\
1+1 &= 2 \\
1+2 &= 3 \\
1+3 &= 0 \\
2+0 &= 2 \\
2+1 &= 3 \\
2+2 &= 0 \\
2+3 &= 1 \\
3+0 &= 3 \\
3+1 &= 0 \\
3+2 &= 1 \\
3+3 &= 2
\end{align*}
\]
Object Constants: 0, 1, 2, 3

Binary Relation Constants:
 same - the first and second arguments are identical
 next - the second argument is number after the first

Ternary Relation Constant:
 plus - the third argument is the sum of the first two

 \(\text{plus}(1,2,3) \)
Ground Relational Data:

<table>
<thead>
<tr>
<th></th>
<th>0,0</th>
<th>1,0</th>
<th>2,0</th>
<th>3,0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>same</td>
<td>¬</td>
<td>¬</td>
<td>¬</td>
</tr>
<tr>
<td>1</td>
<td>¬</td>
<td>same</td>
<td>¬</td>
<td>¬</td>
</tr>
<tr>
<td>2</td>
<td>¬</td>
<td>¬</td>
<td>same</td>
<td>¬</td>
</tr>
<tr>
<td>3</td>
<td>¬</td>
<td>¬</td>
<td>¬</td>
<td>same</td>
</tr>
</tbody>
</table>
Ground Relational Data:

<table>
<thead>
<tr>
<th></th>
<th>(0,0)</th>
<th>(1,0)</th>
<th>(2,0)</th>
<th>(3,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>¬next</td>
<td></td>
<td></td>
<td>next</td>
</tr>
<tr>
<td>1</td>
<td>next</td>
<td>¬next</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>¬next</td>
<td>next</td>
<td>¬next</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>¬next</td>
<td>¬next</td>
<td>next</td>
<td>¬next</td>
</tr>
</tbody>
</table>
Ground Relational Data:

\[next(0,1) \]
\[next(1,2) \]
\[next(2,3) \]
\[next(3,0) \]

Deal with negative literals by saying that all other cases are false. How do we do this?
For every \(x \), there is just one \(y \) such that \(next(x,y) \):

\[
\forall x. \forall y. \forall z. (next(x,y) \land next(x,z) \Rightarrow same(y,z))
\]

Logically equivalent formulation:

\[
\forall x. \forall y. \forall z. (next(x,y) \land \neg same(y,z) \Rightarrow \neg next(x,z))
\]
Ground Relational Data:

\[\text{plus}(0,0,0) \quad \text{plus}(1,0,1) \quad \text{plus}(2,0,2) \quad \text{plus}(3,0,3) \]
\[\text{plus}(0,1,1) \quad \text{plus}(1,1,2) \quad \text{plus}(2,1,3) \quad \text{plus}(3,1,0) \]
\[\text{plus}(0,2,2) \quad \text{plus}(1,2,3) \quad \text{plus}(2,2,0) \quad \text{plus}(3,2,1) \]
\[\text{plus}(0,3,3) \quad \text{plus}(1,3,0) \quad \text{plus}(2,3,1) \quad \text{plus}(3,3,2) \]

Functionality Axiom:

\[\forall x. \forall y. \forall z. \forall w. (\text{plus}(x,y,z) \land \text{plus}(x,y,w) \Rightarrow \text{same}(z,w)) \]
Alternative Definition of Addition

Identity:

\[\forall y. \text{plus}(0, y, y) \]

Successor:

\[
\forall x. \forall y. \forall z. (\text{plus}(x, y, z) \land \text{next}(x, x2) \land \text{next}(z, z2) \\
\Rightarrow \text{plus}(x2, y, z2))
\]

Functionality:

\[
\forall x. \forall y. \forall z. \forall w. (\text{plus}(x, y, z) \land \text{plus}(x, y, w) \Rightarrow \text{same}(z, w))
\]