Quiz 2 Review

Relational Logic

Relational Logic

Object constants: a, b

Relational constants: p, q, r

Variables: x, y, z

p and q are 1-ary, r is 2-ary

Ground terms: a,b

Ground atomic sentences:

p(a), p(b), q(a), q(b), r(a,a), r(a,b), r(b,a), r(b,b)

Each ground atomic sentence has a truth assignment, and the model is defined by these truth assignments

Relational Logic: Evaluations

p(a) TRUE

p(b) FALSE

q(a,a) TRUE

q(a,b) TRUE

q(b,a) TRUE

q(b,b) FALSE

• $q(a,b) \rightarrow p(a)$

 $\bullet \exists x.p(x)$

• $\forall x.q(x,x)$

• $\forall x. \exists y. q(x,y)$

 $\bullet \exists x. \forall y. \neg q(x,y)$

• $\forall y.(\exists x. \neg q(x,y) \to \neg p(y))$

• $\exists y. \forall z. (p(z) \leftrightarrow q(y,z))$

• $\exists x. \forall y. q(x,y) \leftrightarrow \forall x. \exists y. q(x,y)$

Valid, contingent or unsatisfiable

$$\exists x. \forall y. p(x,y) \rightarrow \forall y. \exists x. p(x,y)$$

$$\forall y. \exists x. p(x,y) \rightarrow \exists x. \forall y. p(x,y)$$

$$\forall x. (p(x) \rightarrow q(x)) \rightarrow (\neg q(a) \rightarrow \neg p(a))$$

$$\forall x. (p(x) \rightarrow q(x)) \rightarrow (q(a) \rightarrow p(a))$$

$$(\forall x. \forall y. p(x,y) \rightarrow \forall z. p(z,z)) \rightarrow \forall x. (p(x) \land \neg p(x))$$

$$\exists x. p(x) \land \forall x. \neg p(x)$$

$$\exists x. p(x) \lor \forall x. \neg p(x)$$

$$\forall x. \forall y. p(x,y) \leftrightarrow \forall z. p(z,z)$$

True/False

If $\Gamma \models p(a) \lor q(a)$ and $\Delta \models \forall x. \neg p(x)$, then $\Gamma \cup \Delta \models q(a)$

If $\Gamma \models p(a) \lor q(a)$ and $\Delta \models \forall x. \neg p(x)$, then $\Gamma \cap \Delta \models q(a)$

If $\Gamma \models \phi$ and $\phi \models \psi$, then $\Gamma \models \psi$.

If $\Gamma \models \phi$ and $\Gamma \models \psi$, then $\phi \models \psi$.

If $\Gamma \models p(t)$ for some ground term t, then $\Gamma \models \exists x.p(x)$.

If $\Gamma \models p(t)$ for every ground term t, then $\Gamma \models \forall x.p(x)$.

If $\Gamma \models \forall x.p(x)$, then $\Gamma \models p(t)$ for every ground term t.

If $\Gamma \models \exists x.p(x)$, then $\Gamma \models p(t)$ for some ground term t.

Logic Board

	1	2	3	4
1				
2				
3				
4				

 $gold(2,3) \vee gold(2,4)$ $\neg gold(1,4) \land \neg gold(4,1)$ $\forall y.(gold(2,y) \Rightarrow gold(1,y))$ $\forall x.(gold(x,3) \Rightarrow gold(3,x))$ $\exists y.(gold(2,y) \land gold(y,2))$ $\neg \exists x.gold(x,x)$ $\forall x. \exists y. gold(x,y)$

Sentences:

- $\forall x.(\neg likes(x,3) \rightarrow likes(3,x))$
- $\neg(likes(1,2) \land likes(3,4))$
- $\forall x. \neg likes(4, x)$
- $\forall x. \exists y. \neg likes(x, y)$
- $\neg(likes(1,3))$
- $likes(1,1) \leftrightarrow (likes(2,4) \land likes(3,2))$

Fitch Proofs

New Rules of Inference

Universal Introduction

φ

 $\forall v. \phi_{\tau \leftarrow v}$

where τ is not used in any active assumptions

Universal Elimination

∀ν.φ

 $\varphi_{\nu \leftarrow \tau}$

where τ is ground

Existential Introduction

φ

 $\exists v. \phi_{\tau \leftarrow v}$

where τ is ground

Existential Elimination

∃v.φ

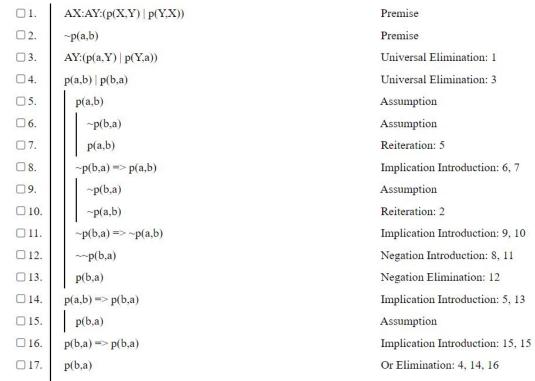
 $\forall v.(\phi \Rightarrow \psi)$

Ψ

where v does not occur free in ψ

Premises: $AX:AY:(p(X,Y) | p(Y,X)), \sim p(a,b)$

Goal: p(b,a)



Premises: $AX:AY:(p(X,Y) | p(Y,X)), AX:AY:\sim p(X,Y)$

Goal: AX:q(X)

```
\Box 1.
          AX:AY:(p(X,Y) \mid p(Y,X))
                                                                                  Premise
\square 2.
                                                                                  Premise
          AX:AY:\sim p(X,Y)
                                                                                  Universal Elimination: 2
\square 3.
          AY:~p(a,Y)
\Box4.
          AY:(p(a,Y) \mid p(Y,a))
                                                                                  Universal Elimination: 1
□ 5.
                                                                                  Universal Elimination: 3
          \sim p(a,a)
□ 6.
                                                                                  Universal Elimination: 4
          p(a,a) \mid p(a,a)
□ 7.
             p(a,a)
                                                                                  Assumption
□ 8.
                \sim q(b)
                                                                                  Assumption
9.
                p(a,a)
                                                                                  Reiteration: 7
10.
             \sim q(b) \Rightarrow p(a,a)
                                                                                  Implication Introduction: 8, 9
\Box 11.
                \sim q(b)
                                                                                  Assumption
\Box 12.
                                                                                  Reiteration: 5
                \sim p(a,a)
                                                                                  Implication Introduction: 11, 12
13.
             \sim q(b) => \sim p(a,a)
□ 14.
             \sim q(b)
                                                                                  Negation Introduction: 10, 13
\Box 15.
             q(b)
                                                                                  Negation Elimination: 14
□ 16.
                                                                                  Implication Introduction: 7, 15
          p(a,a) => q(b)
                                                                                  Or Elimination: 6, 16, 16
\square 17.
          q(b)
□ 18.
           AX:q(X)
                                                                                  Universal Introduction: 17
```

Existential Elimination (the hard one!)

You can think of EE as Or Elimination on steroids!

Five steps to using existential elimination:

- 1. Assume the scope of the existential
- 2. Prove your goal under the assumption
- 3. Exit the assumption with Implication Introduction
- 4. Use Universal Introduction on the free variable in the antecedent
- 5. Use Existential Elimination!

Premise: EX:(p(X) & q(X))

Goal: EX:p(X)

\Box 1.	EX:(p(X) & q(X))	Premise
□ 2.	p(a) & q(a)	Assumption
□3.	p(a)	And Elimination: 2
□ 4 .	EX:p(X)	Existential Introduction: 3
□ 5.	p(a) & q(a) => EX:p(X)	Implication Introduction: 2, 4
□ 6 .	AX:(p(X) & q(X) => EX:p(X))	Universal Introduction: 5
□ 7.	EX:p(X)	Existential Elimination: 1, 6

Premises: $AX:AY:(p(X,Y) \Leftrightarrow q(Y,Y)), EX:q(X,X)$

Goal: AX:EY:p(X,Y)

□ 1 .	EX:q(X,X)	Premise
□ 2.	$AX:AY:(p(X,Y) \Longleftrightarrow q(Y,Y))$	Premise
□3.	$AY:(p(a,Y) \le q(Y,Y))$	Universal Elimination: 2
□4.	p(a,b) <=> q(b,b)	Universal Elimination: 3
□ 5.	q(b,b) => p(a,b)	Biconditional Elimination: 4
□ 6 .	q(b,b)	Assumption
□ 7.	p(a,b)	Implication Elimination: 5, 6
□ 8.	EY:p(a,Y)	Existential Introduction: 7
□9.	$q(b,b) \Longrightarrow EY:p(a,Y)$	Implication Introduction: 6, 8
□ 10 .	$AX:(q(X,X) \Longrightarrow EY:p(a,Y))$	Universal Introduction: 9
□ 1 1.	EY:p(a,Y)	Existential Elimination: 1, 10
□ 1 2.	AX:EY:p(X,Y)	Universal Introduction: 11

Q&A